22 research outputs found

    Le role des forces à longues distances dans la determination de la libération d'énergie cinétique translationnelle. La formation de cations C4H4+ à partir du Benzène et de la Pyridine.

    Full text link
    Kinetic energy release distributions (KERDs) for the benzene ion fragmenting into C4H4+ and C2H2 have been recorded by double-focussing mass spectrometry in the metastable energy window and by a retarding field experiment up to an energy of 5 eV above the fragmentation threshold. They are compared with those resulting from the HCN loss reaction from the pyridine ion. Both reactions display a similar variation of the kinetic energy release as a function of the internal energy: the average release is smaller than statistically expected, with a further restriction of the phase-space sampling for the C5H5N+ dissociation. Ab initio calculations of the potential-energy profile have been carried out. They reveal a complicated reaction mechanism, the last step of which consists in the dissociation of a weakly bound ion-quadrupole or ion-dipole complex. The KERDs have been analyzed by the maximum entropy method. The fraction of phase-space effectively sampled by the pair of fragments has been determined and is similar for both dissociations. Both reactions are constrained by the square root of the released kinetic energy, epsilon1/2. This indicates that in the latter stage of the dissociation process, the reaction coordinate is adiabatically decoupled from the bath of the bound degrees of freedom. For the C6H6+ fragmentation, the analysis of the experimental results strongly suggests that, just as for the symmetric interaction potential, the translational motion is confined to a two-dimensional subspace. This dimensionality reduction of the translational phase space is due to the fact that the Hamiltonian of both weakly bound complexes contains a cyclic coordinate

    Dynamique de la dissociation des états fondamental et excité du 1,1-difluoroéthylène ionisé.

    Full text link
    The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the dissociation threshold. The second experiment samples the metastable range, and the average ion internal energy is limited to about 0.2 eV above the threshold. In both energy domains, KERDs are found to be bimodal. Each component has been analyzed by the maximum entropy method. The narrow, low kinetic energy components display for both experiments the characteristics of a statistical, simple bond cleavage reaction: constraint equal to the square root of the fragment kinetic energy and ergodicity index higher than 90%. Furthermore, this component is satisfactorily accounted for in the metastable time scale by the orbiting transition state theory. Potential energy surfaces corresponding to the five lowest electronic states of the dissociating 1,1-C2H2F2+ ion have been investigated by ab initio calculations at various levels. The equilibrium geometry of these states, their dissociation energies, and their vibrational wavenumbers have been calculated, and a few conical intersections between these surfaces have been identified. It comes out that the ionic ground state (X) over tilde B-2(1) is adiabatically correlated with the lowest dissociation asymptote. Its potential energy curve increases in a monotonic way along the reaction coordinate, giving rise to the narrow KERD component. Two states embedded in the third photoelectron band ( (B) over tilde (2)A(1), at 15.95 eV and (C) over tilde B-2(2) at 16.17 eV) also correlate with the lowest asymptote at 14.24 eV. We suggest that their repulsive behavior along the reaction coordinate be responsible for the KERD high kinetic energy contribution
    corecore