76 research outputs found

    Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope

    Get PDF
    We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues but also when performing FFM measurements through a single cellular layer. This work paves the way for the application of FFM to complex three-dimensional multicellular samples

    Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon: heparan sulfate interaction

    Get PDF
    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

    Long-Lived Two-Photon Excited Luminescence of Water-Soluble Europium Complex: Applications in Biological Imaging Using Two-Photon Scanning Microscopy.

    Get PDF
    International audienceA new europium complex presenting good solubility and stability in water, intense emission in the red (616 nm), long luminescence lifetime, and significant two-photon absorption cross-section in the biological window has been designed and successfully used for two-photon scanning microscopy bioimaging experiments on fixed cancer cells

    Cell Entry and Trafficking of Human Adenovirus Bound to Blood Factor X Is Determined by the Fiber Serotype and Not Hexon:Heparan Sulfate Interaction

    Get PDF
    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon∶FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

    In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models

    Get PDF
    Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag+ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products

    Breakdown of cell-collagen networks through collagen remodeling

    Full text link
    International audienceCollagen model tissues are analyzed, which consist of cells embedded in a collagen matrix at different concentrations (of cells and collagen). Rheological properties are measured and complementary confocal microscopy analyses are carried out. An important feature is observed, corresponding to the breakdown of the collagen network (i.e. decrease in network elasticity) for high collagen concentrations, due to the presence of cells. Thanks to confocal microscopy, we show that cells elongate within the gel and can remodel it, this being a concentration-dependent feature. A careful analysis of the remodelling process shows that cells can attract collagen in their close neighborhood, this being an irreversible process, and that migrating cells create collagen-depleted regions behind them

    Terbium(III) Luminescent Complexes as Millisecond-Scale Viscosity Probes for Lifetime Imaging

    Full text link
    International audienceFluorescent probes that are able to directly measure viscosity are attractive candidates for the study of intracellular environments. We report a new class of luminescent rotors, based on the sensitized emission of a terbium(III) complex. A 4-fold increase in both quantum yield and luminescence lifetime was observed in viscous media for the studied complexes, with a lifetime ranging from 0.23 to 0.89 ms over a broad range of viscosities (0.6–1200 cP). The presented approach, relying on the millisecond-scale luminescence lifetime of the lanthanide ions, was applied to fixed T24 cancer cells using temporal sampling lifetime imaging microscopy
    • …
    corecore