63 research outputs found

    Cancers co-opt cohabitants’ catabolism: Autophagy and senescence in the tumor stroma

    Get PDF
    Comment on: Capparelli C, et al. Cell Cycle 2012; 11:2272-84 and Capparelli C, et al. Cell Cycle 2012; 11:2285-302

    BAFF regulates activation of self-reactive T cells through B-cell dependent mechanisms and mediates protection in NOD mice

    No full text
    Targeting the BAFF/APRIL system has shown to be effective in preventing T-cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF-deficient NOD mice to examine how BAFF availability would influence T-cell responses in vivo and the development of spontaneous diabetes. BAFF-deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft. Diabetes protection correlated with a failure to expand pathogenic IGRP-reactive CD8(+) T cells, which were maintained in the periphery at correspondingly low levels. Adoptive transfer of IGRP-reactive CD8(+) T cells with B cells into BAFF-deficient NOD mice enhanced IGRP-reactive CD8(+) T-cell expansion. Furthermore, when provoked with cyclophosphamide, or transferred to a secondary lymphopenic host, the latent pool of self-reactive T cells resident in BAFF-deficient NOD mice could elicit beta cell destruction. We conclude that lack of BAFF prevents the procurement of B-cell-dependent help necessary for the emergence of destructive diabetes. Indeed, treatment of NOD mice with the BAFF-blocking compound, BR3-Fc, resulted in a delayed onset and reduced incidence of diabetes.Eliana Mariño, Stacey N. Walters, Jeanette E. Villanueva, James L. Richards, Charles R. Mackay, Shane T. Gre

    Hypoxia-inducible factor-1alpha (HIF-1alpha) potentiates beta-cell survival after islet transplantation of human and mouse islets

    No full text
    A high proportion of β-cells die within days of islet transplantation. Reports suggest that induction of hypoxia-inducible factor-1α (HIF-1α) predicts adverse transplant outcomes. We hypothesized that this was a compensatory response and that HIF-1α protects β-cells during transplantation. Transplants were performed using human islets or murine β-cell-specific HIF-1α-null (β-HIF-1α-null) islets with or without treatment with deferoxamine (DFO) to increase HIF-1α. β-HIF-1α-null transplants had poor outcomes, demonstrating that lack of HIF-1α impaired transplant efficiency. Increasing HIF-1α improved outcomes for mouse and human islets. No effect was seen in β-HIF-1α-null islets. The mechanism was decreased apoptosis, resulting in increased β-cell mass posttransplantation. These findings show that HIF-1α is a protective factor and is required for successful islet transplant outcomes. Iron chelation with DFO markedly improved transplant success in a HIF-1α-dependent manner, thus demonstrating the mechanism of action. DFO, approved for human use, may have a therapeutic role in the setting of human islet transplantation.Rebecca A. Stokes, Kim Cheng, Natasha Deters, Sue Mei Lau, Wayne J. Hawthorne ... Shane Grey ... et al

    Reduction of ARNT in myeloid cells causes immune suppression and delayed wound healing.

    No full text
    Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that binds to partners to mediate responses to environmental signals. To investigate its role in the innate immune system, floxed ARNT mice were bred with lysozyme M-Cre recombinase animals to generate lysozyme M-ARNT (LAR) mice with reduced ARNT expression. Myeloid cells of LAR mice had altered mRNA expression and delayed wound healing. Interestingly, when the animals were rendered diabetic, the difference in wound healing between the LAR mice and their littermate controls was no longer present, suggesting that decreased myeloid cell ARNT function may be an important factor in impaired wound healing in diabetes. Deferoxamine (DFO) improves wound healing by increasing hypoxia-inducible factors, which require ARNT for function. DFO was not effective in wounds of LAR mice, again suggesting that myeloid cells are important for normal wound healing and for the full benefit of DFO. These findings suggest that myeloid ARNT is important for immune function and wound healing. Increasing ARNT and, more specifically, myeloid ARNT may be a therapeutic strategy to improve wound healing
    corecore