5 research outputs found

    Thermo-optical dynamics of a nonlinear GaInP photonic crystal nanocavity depend on the optical mode profile

    Get PDF
    We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap nanocavity and a delocalized mode in a Ga0.51_{\mathrm{0.51}}In0.49_{\mathrm{0.49}}P photonic crystal membrane. We model these results in terms of heat transport and thermo-optical response in the material. By step-modulating the optical input power we push the nonlinear resonance to jump between stable branches of its response curve, causing bistable switching. An overshoot of the intensity followed by a relaxation tail is observed upon bistable switching. In this way, the thermal relaxation of both the localized resonance and the delocalized resonance is measured. Significant difference in decay time is observed and related to the optical mode profile of the resonance. We reproduce the observed transient behavior with our thermo-optical model, implementing a non-instantaneous nonlinearity, and taking into account the optical mode profile of the resonance, as experimentally measured

    Mode mapping Q > 500 000 photonic crystal nanocavities using free carrier absorption

    Full text link
    We demonstrate a nonlinear photomodulation spectroscopy method to image the mode profile of a high-Q photonic crystal resonator (PhCR). This far-field imaging method is suitable for ultrahigh-Q cavities which we demonstrate on a Q = 619000 PhCR. We scan the PhCR surface with a 405 nm pump beam that modulates the refractive index by local thermal tuning, while probing the response of the resonance. We enhance resolution by probing at high power, using the thermo-optical nonlinearity of the PhCR. Spatial resolution of the thermo-optical effect is typically constrained by the broad thermal profile of the optical pump. Here we go beyond the thermal limit and show that we can approach the diffraction limit of the pump light. This is due to free carrier absorption that heats up the PhCR only when there is overlap between the optical pump spot and the optical mode profile. This is supported with a thermo-optical model that reproduces the high-resolution mode mapping. Results reveal that the observed enhanced resolution is reached for surprisingly low carrier density

    Mode Mapping Photonic Crystal Nanocavities with Q>5Ɨ105 Using Free-Carrier Absorption

    No full text
    We demonstrate a nonlinear photomodulation spectroscopy method to image the mode profile of a high-Q photonic crystal resonator (PhCR). This far-field imaging method is suitable for ultrahigh-Q cavities which we demonstrate on a Q=619000 PhCR. We scan the PhCR surface with a 405-nm pump beam that modulates the refractive index by local thermal tuning, while probing the response of the resonance. We enhance resolution by probing at high power, using the thermo-optical nonlinearity of the PhCR. Spatial resolution of the thermo-optical effect is typically constrained by the broad thermal profile of the optical pump. Here we go beyond the thermal limit and show that we can approach the diffraction limit of the pump light. This is due to free carrier absorption that heats up the PhCR only when there is overlap between the optical pump spot and the optical mode profile. This is supported with a thermo-optical model that reproduces the high-resolution mode mapping. Results reveal that the observed enhanced resolution is reached for surprisingly low carrier density

    Thermo-optical dynamics of a nonlinear GaInP photonic crystal nanocavity depend on the optical mode profile

    Get PDF
    We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap nanocavity and a delocalized mode in a Ga0.51In0.49P photonic crystal membrane. We model these results in terms of heat transport and thermo-optical response in the material. By step-modulating the optical input power we push the nonlinear resonance to jump between stable branches of its response curve, causing bistable switching. An overshoot of the intensity followed by a relaxation tail is observed upon bistable switching. In this way, the thermal relaxation of both the localized resonance and the delocalized resonance is measured. Significant difference in decay time is observed and related to the optical mode profile of the resonance. We reproduce the observed transient behavior with our thermo-optical model, implementing a non-instantaneous nonlinearity, and taking into account the optical mode profile of the resonance, as experimentally measured

    Mode Mapping Photonic Crystal Nanocavities with Q>5Ɨ105 Using Free-Carrier Absorption

    No full text
    We demonstrate a nonlinear photomodulation spectroscopy method to image the mode profile of a high-Q photonic crystal resonator (PhCR). This far-field imaging method is suitable for ultrahigh-Q cavities which we demonstrate on a Q=619000 PhCR. We scan the PhCR surface with a 405-nm pump beam that modulates the refractive index by local thermal tuning, while probing the response of the resonance. We enhance resolution by probing at high power, using the thermo-optical nonlinearity of the PhCR. Spatial resolution of the thermo-optical effect is typically constrained by the broad thermal profile of the optical pump. Here we go beyond the thermal limit and show that we can approach the diffraction limit of the pump light. This is due to free carrier absorption that heats up the PhCR only when there is overlap between the optical pump spot and the optical mode profile. This is supported with a thermo-optical model that reproduces the high-resolution mode mapping. Results reveal that the observed enhanced resolution is reached for surprisingly low carrier density
    corecore