702 research outputs found

    Constraining the Origin of Local Positrons with HAWC TeV Gamma-Ray Observations of Two Nearby Pulsar Wind Nebulae

    Full text link
    The HAWC Gamma-Ray Observatory has reported the discovery of TeV gamma-ray emission extending several degrees around the positions of Geminga and B0656+14 pulsars. Assuming these gamma rays are produced by inverse Compton scattering off low-energy photons in electron halos around the pulsars, we determine the diffusion of electrons and positrons in the local interstellar medium. We will present the morphological and spectral studies of these two VHE gamma-ray sources and the derived positron spectrum at Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    EDGE: a code to calculate diffusion of cosmic-ray electrons and their gamma-ray emission

    Full text link
    The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby (\simhundreds of parsecs) and middle age (maximum of \simhundreds of kyr) source. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat diffusion of electrons and compute their diffusion from a central source with a flexible injection spectrum. We can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space and the electron and positron flux reaching the Earth. We present in this contribution the fundamentals of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Kore

    Electron-hole correlation effects in the emission of light from quantum wires

    Full text link
    We present a self-consistent treatment of the electron-hole correlations in optically excited quantum wires within the ladder approximation, and using a contact potential interaction. The limitations of the ladder approximation to the excitonic low-density region are largely overcome by the introduction of higher order correlations through self consistency. We show relevance of these correlations in the low-temperature emission, even for high density relevant in lasing, when large gain replaces excitonic absorption.Comment: 4 paes 3 figure

    Follow-up of multi-messenger alerts with the KM3NeT ARCA and ORCA detectors

    Get PDF
    The strength of multi-messenger astronomy comes from its capability to increase the significance of a detection through the combined observation of events coincident in space and time. This is particularly valuable for transient events, since the use of a narrow time window can allow a reduction of background of the search. In KM3NeT, we are actively monitoring and analysing a variety of external triggers in real-time, including alerts like IceCube neutrinos, HAWC gamma-ray transients, LIGO-Virgo- KAGRA gravitational waves, SNEWS neutrino alerts, and others. In this contribution, we present the follow-up of various external alerts using the comple- mentary capabilities of the two KM3NeT detectors, ORCA (covering the few GeV to few TeV energy range) and ARCA (ranging from sub-TeV energies up to tens of PeV). Both detectors were collecting high-quality data with partial configurations during the period of the studied alerts, which goes from December 2021 until June 2023

    Very high energy particle acceleration powered by the jets of the microquasar SS 433

    Full text link
    SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of 0.26c\sim0.26c extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is 1040\sim10^{40} erg s1^{-1}. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of γ\gamma rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV γ\gamma-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of 16\sim16~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zho

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
    corecore