38 research outputs found

    Improving the method of solar radiation durability determination of cable products

    Get PDF
    The authors suggest an extra physic-mechanical procedure to determine durability of cable goods to solar radiation exposure. The test check was carried out using the standard and the proposed procedures. The results of two tests were compared and analyzed. The use of the proposed technique allows improving the validity and reliability of the laboratory experiment conducted in a real production environment and exclude the low-quality cable items. The only disadvantage of the proposed technique is its labor intensiveness

    Successful replantation of self-amputated penis using microvascular repair resulting in restoration of voiding and erectile function

    No full text
    Intentional self-amputation of the penis is rarely encountered and usually occurs in the context of an underlying psychiatric illness. We report the case of a 42-year-old male who intentionally amputated his penis, both testicles, and a large portion of the scrotum en bloc using garden shears. Microscopic and macroscopic replantation of the penis was undertaken, resulting in restoration of normal urinary function and moderate erectile function

    Enhanced implant integration with hierarchically structured implants : a pilot study in rabbits

    No full text
    AIM: To investigate bone-to-implant bonding for some novel surface modifications with a hierarchic structure and to correlate the in vivo results with surface roughness parameters. MATERIALS AND METHODS: Newly developed implants surfaces were tested in rabbits and compared with the commercially available OsseoSpeed™ (OS) implant. The blasted test samples were subjected to treatment in oxalic acid (AT-II), followed by subsequent etching in hydrofluoric acid (AT-I). Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the surface topography and chemical composition of the implants. Biomechanical testing after 6 weeks of healing was complemented with the quantification of fluorochromes and the results were subjected to a multivariate statistical analysis. RESULTS: The results show, both with biomechanical- and with histomorphometrical tests, that the AT-I implants with different surface roughness at the micro (blasting), submicro (shallow cavities) and nanolevels (precipitates) have a greater bone tissue integration compared with the AT-II- and OS implants. The 2D bone-to-implant contact (BIC) data were in accordance with the 3D removal torque (RTQ) results even if the former were deduced from implants located in spongeous-type bone and the latter in cortical bone. The increase in RTQ values for the test samples AT-I and AT-II compared with the reference complies with the slightly higher S(a) values for these surfaces. CONCLUSIONS: Using a combination of conventional methods with novel quantification of florochrome and multivariate analysis, the influence of surface roughness on different levels could be discriminated. The RTQ and BIC values show that the most hierarchical structure with submicro cavities and nanoscale precipitates possesses the most favourable osseointegration properties

    Improved osseointegration and interlocking capacity with dual acid-treated implants : a rabbit study

    No full text
    Aim: To investigate how osseointegration is affected by different nano-and microstructures. The hypothesis was that the surface structure created by dual acid treatment (AT-1), applied on a reduced topography, might achieve equivalent biomechanical performance as a rougher surface treated with hydrofluoric acid (HF). Materials and methods: In a preclinical rabbit study, three groups (I, II, and III) comprised of test and control implants were inserted in 30 rabbits. The microstructures of the test implants were either produced by blasting with coarse (I) or fine (II) titanium particles or remained turned (III). All test implants were thereafter treated with AT-1 resulting in three different test surfaces. The microstructure of the control implants was produced by blasting with coarse titanium particles thereafter treated with HF. The surface topography was characterized by interferometry. Biomechanical (removal torque) and histomorphometric (bone-implant contact; bone area) performances were measured after 4 or 12 weeks of healing Results: Removal torque measurement demonstrated that test implants in group I had an enhanced biomechanical performance compared to that of the control despite similar surface roughness value (Sa). At 4 weeks of healing, group II test implants showed equivalent biomechanical performance to that of the control, despite a decreased Sa value. Group III test implants showed decreased biomechanical performance to that of the control Conclusions: The results of the present study suggest that nano-and microstructure alteration by AT-1 on a blasted implant might enhance the initial biomechanical performance, while for longer healing time, the surface interlocking capacity seems to be more importan
    corecore