1,791 research outputs found

    Land degradation: links to agricultural output and profitability

    Get PDF
    To understand land degradation and assess policy responses, knowledge is needed of the bio-physical causes, the economic effects on farms and the incentives farmers face to avoid or ameliorate the degradation. An empirical study of land degradation in the Australian state of New South Wales is presented in this article. The results suggest that there are incentives for farmers to co-exist with certain forms of degradation, while there are also incentives to avoid some other forms.Land Economics/Use,

    Discussion of: Brownian distance covariance

    Full text link
    Discussion on "Brownian distance covariance" by G\'abor J. Sz\'ekely and Maria L. Rizzo [arXiv:1010.0297]Comment: Published in at http://dx.doi.org/10.1214/09-AOAS312F the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discussion of: Brownian distance covariance

    Full text link
    Discussion on "Brownian distance covariance" by G\'{a}bor J. Sz\'{e}kely and Maria L. Rizzo [arXiv:1010.0297]Comment: Published in at http://dx.doi.org/10.1214/09-AOAS312E the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Kernel Independence Test for Random Processes

    Full text link
    A new non parametric approach to the problem of testing the independence of two random process is developed. The test statistic is the Hilbert Schmidt Independence Criterion (HSIC), which was used previously in testing independence for i.i.d pairs of variables. The asymptotic behaviour of HSIC is established when computed from samples drawn from random processes. It is shown that earlier bootstrap procedures which worked in the i.i.d. case will fail for random processes, and an alternative consistent estimate of the p-values is proposed. Tests on artificial data and real-world Forex data indicate that the new test procedure discovers dependence which is missed by linear approaches, while the earlier bootstrap procedure returns an elevated number of false positives. The code is available online: https://github.com/kacperChwialkowski/HSIC .Comment: In Proceedings of The 31st International Conference on Machine Learnin

    A maximum-mean-discrepancy goodness-of-fit test for censored data

    Get PDF
    We introduce a kernel-based goodness-of-fit test for censored data, where observations may be missing in random time intervals: a common occurrence in clinical trials and industrial life-testing. The test statistic is straightforward to compute, as is the test threshold, and we establish consistency under the null. Unlike earlier approaches such as the Log-rank test, we make no assumptions as to how the data distribution might differ from the null, and our test has power against a very rich class of alternatives. In experiments, our test outperforms competing approaches for periodic and Weibull hazard functions (where risks are time dependent), and does not show the failure modes of tests that rely on user-defined features. Moreover, in cases where classical tests are provably most powerful, our test performs almost as well, while being more general

    Interpretable Distribution Features with Maximum Testing Power

    Full text link
    Two semimetrics on probability distributions are proposed, given as the sum of differences of expectations of analytic functions evaluated at spatial or frequency locations (i.e, features). The features are chosen so as to maximize the distinguishability of the distributions, by optimizing a lower bound on test power for a statistical test using these features. The result is a parsimonious and interpretable indication of how and where two distributions differ locally. An empirical estimate of the test power criterion converges with increasing sample size, ensuring the quality of the returned features. In real-world benchmarks on high-dimensional text and image data, linear-time tests using the proposed semimetrics achieve comparable performance to the state-of-the-art quadratic-time maximum mean discrepancy test, while returning human-interpretable features that explain the test results
    corecore