73 research outputs found

    Phase diagram for a Bose-Einstein condensate moving in an optical lattice

    Full text link
    The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott insulator(MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable phases was observed.Comment: 4 figure

    Continuous and Pulsed Quantum Zeno Effect

    Full text link
    Continuous and pulsed quantum Zeno effects were observed using a 87^{87}Rb Bose-Einstein condensate(BEC). Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate ωR\omega_R, were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two level system was quantified for pulsed measurements with a time interval δt\delta t between pulses and continuous measurements with a scattering rate γ\gamma. We observe that the continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when γδt=3.60(0.43)\gamma\delta t=3.60(0.43), in agreement with the predicted value of 4. Increasing the measurement rate suppressed the transition rate down to 0.005ωR0.005\omega_R.Comment: 5 pages, 4 figure

    Imaging the Mott Insulator Shells using Atomic Clock Shifts

    Full text link
    Microwave spectroscopy was used to probe the superfluid-Mott Insulator transition of a Bose-Einstein condensate in a 3D optical lattice. Using density dependent transition frequency shifts we were able to spectroscopically distinguish sites with different occupation numbers, and to directly image sites with occupation number n=1 to n=5 revealing the shell structure of the Mott Insulator phase. We use this spectroscopy to determine the onsite interaction and lifetime for individual shells

    Isotope-shift spectroscopy of the 1S0→3P1{^1}S_0 \rightarrow {^3}P_1 and 1S0→3P0{^1}S_0 \rightarrow {^3}P_0 transitions in strontium

    Full text link
    Isotope shift spectroscopy with narrow optical transitions provides a benchmark for atomic structure calculations and has also been proposed as a way to constrain theories predicting physics beyond the Standard Model. Here, we have measured frequency shifts of the 1S0→3P1{^1}S_0 \rightarrow {^3}P_1 and 1S0→3P0{^1}S_0 \rightarrow {^3}P_0 transitions between all stable isotopes of strontium relative to 88{^{88}}Sr. This includes the first reported measurements of the 1S0→3P0{^1}S_0 \rightarrow {^3}P_0 isotope shift of 88{^{88}}Sr-86{^{86}}Sr and 88{^{88}}Sr-84{^{84}}Sr. Using the isotope shift measurements of the two transitions, a King plot analysis is performed. These results, combined with other recent isotope shift measurements in other atomic systems, will help refine atomic structure calculations and theoretical predictions for new physics.Comment: 9 pages, 4 figures, 3 table

    Atom trapping with a thin magnetic film

    Full text link
    We have created a 87^{87}Rb Bose-Einstein condensate in a magnetic trapping potential produced by a hard disk platter written with a periodic pattern. Cold atoms were loaded from an optical dipole trap and then cooled to BEC on the surface with radiofrequency evaporation. Fragmentation of the atomic cloud due to imperfections in the magnetic structure was observed at distances closer than 40 μ\mum from the surface. Attempts to use the disk as an atom mirror showed dispersive effects after reflection.Comment: 4 pages, 5 figure

    Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases

    Full text link
    Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally-destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally-destructive technique to that of phase-contrast imaging.Comment: 10 pages, 5 figures, submitted to Review of Scientific Instrument

    Resistive Flow in a Weakly Interacting Bose-Einstein Condensate

    Get PDF
    We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices

    Spectrum Estimation of Density Operators with Alkaline-Earth Atoms

    Get PDF
    We show that Ramsey spectroscopy of fermionic alkaline-earth atoms in a square-well trap provides an efficient and accurate estimate for the eigenspectrum of a density matrix whose n copies are stored in the nuclear spins of n such atoms. This spectrum estimation is enabled by the high symmetry of the interaction Hamiltonian, dictated, in turn, by the decoupling of the nuclear spin from the electrons and by the shape of the square-well trap. Practical performance of this procedure and its potential applications to quantum computing and time keeping with alkaline-earth atoms are discussed
    • …
    corecore