5 research outputs found
The repulsion between localization centers in the Anderson model
In this note we show that, a simple combination of deep results in the theory
of random Schr\"odinger operators yields a quantitative estimate of the fact
that the localization centers become far apart, as corresponding energies are
close together
Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder
We study the distribution of the -th energy level for two different
one-dimensional random potentials. This distribution is shown to be related to
the distribution of the distance between two consecutive nodes of the wave
function.
We first consider the case of a white noise potential and study the
distributions of energy level both in the positive and the negative part of the
spectrum. It is demonstrated that, in the limit of a large system
(), the distribution of the -th energy level is given by a
scaling law which is shown to be related to the extreme value statistics of a
set of independent variables.
In the second part we consider the case of a supersymmetric random
Hamiltonian (potential ). We study first the case of
being a white noise with zero mean. It is in particular shown that
the ground state energy, which behaves on average like in
agreement with previous work, is not a self averaging quantity in the limit
as is seen in the case of diagonal disorder. Then we consider the
case when has a non zero mean value.Comment: LaTeX, 33 pages, 9 figure
Eigenvalue Order Statistics for Random Schrödinger Operators with Doubly-Exponential Tails
We consider random Schrödinger operators of the form , where is the lattice Laplacian on and is an i.i.d. random field, and study the extreme order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite subsets of . We show that, for with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and the corresponding eigenfunctions are exponentially localized in regions where takes large, and properly arranged, values. The picture we prove is thus closely connected with the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our approach is largely independent of existing methods for proofs of Anderson localization and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing the regions where the leading eigenfunctions put most of their mass