145 research outputs found
GridWeaver: A Fully-Automatic System for Microarray Image Analysis Using Fast Fourier Transforms
Experiments using microarray technology generate large amounts
of image data that are used in the analysis of genetic function.
An important stage in the analysis is the determination of
relative intensities of spots on the images generated.
This paper presents GridWeaver,
a program that reads in images from a microarray experiment,
automatically locates subgrids and spots in the images,
and then determines the spot
intensities needed in the analysis of gene function.
Automatic gridding is performed by running
Fast Fourier Transforms on pixel intensity sums.
Tests on several data sets show that the program responds
well even on images that have significant noise,
both random and systemic
Two Electrons in a Quantum Dot: A Unified Approach
Low-lying energy levels of two interacting electrons confined in a
two-dimensional parabolic quantum dot in the presence of an external magnetic
field have been revised within the frame of a novel model. The present
formalism, which gives closed algebraic solutions for the specific values of
magnetic field and spatial confinement length, enables us to see explicitly
individual effects of the electron correlation.Comment: 14 page
Grounding knowledge and normative valuation in agent-based action and scientific commitment
Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations
The Eliza effect and its dangers: from demystification to gender critique
This essay provides a gender critique of the Eliza effect. It delineates the way in which the Eliza effect is operationalised in AI research even as it is ostensibly demystified, for example in the writings of Douglas Hofstadter and Joseph Weizenbaum. It then exposes the gendered assumptions embedded in the nomenclature used to name this misperception of the computer as having capabilities equivalent to the human. It traces the genealogy of that nomenclature back through Weizenbaum’s ELIZA, to George Bernard Shaw’s Pygmalion. A close reading of the play is deployed in order to reveal the structural inequities of gender, class, and who or what gets to be human, that are both explored in the play and encoded in the operation and operationalisations of the Eliza effect. It concludes by attending to that operation and operationalisation in relation to today’s Virtual Personal Assistant’s, and makes a case for the importance of critique in order to expose the inequitable structures of power obscured and compounded by the Eliza effect – both its name, and that which it names
Natural anti-CCR5 antibodies in HIV-infection and -exposure
Natural antibodies constitute a first-line of defence against pathogens; they may also play other roles in immune regulation and homeostasis, through their ability to bind host antigens, surface molecules and receptors. Natural anti-CCR5 antibodies can be decisive in preventing HIV infection in mucosal tissues and offer prompt and effective protection just at major sites of virus entry. Among natural anti-CCR5 antibodies, IgG and IgA to the ECL1 domain have been shown to block HIV effectively and durably without causing harm to the host. Their biological properties and their uncommon generation in subsets of HIV-infected and HIV-exposed individuals (so called ESN) will be introduced and discussed, with the aim at exploiting their potential in therapy and prevention
The iPlant Collaborative: Cyberinfrastructure for Plant Biology
The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services
So what do we really mean when we say that systems biology is holistic?
Background: An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners
Studying the Functional Genomics of Stress Responses in Loblolly Pine With the Expresso Microarray Experiment Management System
Conception, design, and implementation of cDNA microarray experiments present a
variety of bioinformatics challenges for biologists and computational scientists. The multiple
stages of data acquisition and analysis have motivated the design of Expresso, a
system for microarray experiment management. Salient aspects of Expresso include
support for clone replication and randomized placement; automatic gridding, extraction of
expression data from each spot, and quality monitoring; flexible methods of combining
data from individual spots into information about clones and functional categories; and the
use of inductive logic programming for higher-level data analysis and mining. The
development of Expresso is occurring in parallel with several generations of microarray
experiments aimed at elucidating genomic responses to drought stress in loblolly pine
seedlings. The current experimental design incorporates 384 pine cDNAs replicated and
randomly placed in two specific microarray layouts. We describe the design of Expresso as
well as results of analysis with Expresso that suggest the importance of molecular
chaperones and membrane transport proteins in mechanisms conferring successful
adaptation to long-term drought stress
- …