62 research outputs found

    Let the Holder Beware--A Problematic Analysis of the FTC Holder in Due Course Rule !

    Get PDF

    Let the Holder Beware--A Problematic Analysis of the FTC Holder in Due Course Rule !

    Get PDF

    Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human killer immunoglobulin-like receptors (KIRs) play a critical role in governing the immune response to neoplastic and infectious disease. Rhesus macaques serve as important animal models for many human diseases in which KIRs are implicated; however, the study of KIR activity in this model is hindered by incomplete characterization of <it>KIR </it>genetics.</p> <p>Results</p> <p>Here we present a characterization of <it>KIR </it>genetics in rhesus macaques (<it>Macaca mulatta)</it>. We conducted a survey of <it>KIRs </it>in this species, identifying 47 novel full-length <it>KIR </it>sequences. Using this expanded sequence library to build upon previous work, we present evidence supporting the existence of 22 <it>Mamu-KIR </it>genes, providing a framework within which to describe macaque <it>KIRs</it>. We also developed a novel pyrosequencing-based technique for <it>KIR </it>genotyping. This method provides both comprehensive <it>KIR </it>genotype and frequency estimates of transcript level, with implications for the study of <it>KIRs </it>in all species.</p> <p>Conclusions</p> <p>The results of this study significantly improve our understanding of macaque <it>KIR </it>genetic organization and diversity, with implications for the study of many human diseases that use macaques as a model. The ability to obtain comprehensive KIR genotypes is of basic importance for the study of KIRs, and can easily be adapted to other species. Together these findings both advance the field of macaque KIRs and facilitate future research into the role of KIRs in human disease.</p

    Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment.

    No full text
    The appearance of vacuoles inside acinar cells characterizes an early stage of development in different models of acute pancreatitis and, possibly, also in human disease. The vacuoles have been shown to contain both digestive and lysosomal enzymes. This abnormal admixture may have important implications for the pathogenesis of pancreatitis because the lysosomal enzyme cathepsin B can activate trypsinogen and may, by this way, trigger pancreatic autodigestion. For the activation process of trypsinogen by cathepsin B, however, an acidic pH is required. This study, therefore, looked for evidence of vacuole acidification in two different models of acute pancreatitis. Edematous pancreatitis was induced in rats by hyperstimulation with cerulein and hemorrhagic pancreatitis was induced in mice by feeding a choline-deficient, ethionine-supplemented diet. Pancreatic acinar cells were isolated at different times after induction of pancreatitis and incubated with 50 microM of acridine orange to identify acidic intracellular compartments. As shown in previous work, zymogen granules are the main acidic compartment of normal acinar cells; they remained acidic throughout the course of pancreatitis in both models. Vacuoles became increasingly more frequent in both models as pancreatitis progressed. Throughout development of pancreatitis, vacuoles accumulated acridine orange indicating an acidic interior. Addition of a protonophore (10 microM monensin or 5 microM carbonyl cyanide m-chlorophenylhydrazone [CCCP] or a weak base (5 mM NH4Cl) completely and rapidly abolished acridine orange fluorescence inside both zymogen granules and vacuoles providing further evidence for an acidic interior. The acidification of vacuoles seen in two different models of pancreatitis may be an important requirement for activation of trypsinogen by cathepsin B and thus for the development of acute pancreatitis

    Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment.

    No full text
    • ā€¦
    corecore