215 research outputs found
Optimizing the ship constructions by automatic line heating forming process based in numerical simulation and artificial intelligence
This paper presents the development of a novel automatic lineheating forming
machine based on intensive application of the numerical simulation and artificial intelligence. The
forming of certain parts of the shell of the ships can be done by heating forming
or mechanical forming. Line heating forming is usually a more flexible process, and therefore, it
is more useful. The principal problem with line heating forming is that it is very
time consuming, manual and needs very qualified workers. In this research, line heating forming is
studied looking for the best way to automate the process.
Numerical models were developed based on finite element methods to simulate the process of heating,
cooling and finally forming of the plates. The models were tested and validated against
experimental test over small plates. However, as numerical models have extremely long
computational times demanding high computational capacities; they are not directly
applicable in a real time scenario, as it is needed.
Finally, after the mathematization of this knowledge and making use of it, it was developed a
software based on artificial intelligence. Using an informed heuristic search strategy,
this software predicts the optimal set of heating lines, their sequence and velocity to be
applied over the plate to obtain the final shape. The developed system was tested to
show its feasibility. As a consequence, there is a significative reduction in computational time
allowing the system to be applied in a soft real-time environment. This model will
help shipyard manufacturers determine the positions and trajectory of torch for the flame heating
lines and their heating parameters to form a desired shape of plate
The significance of c.690G>T polymorphism (rs34529039) and expression of the CEBPA gene in ovarian cancer outcome
The CEBPA gene is known to be mutated or abnormally expressed in several cancers. This is the first study assessing the clinical impact of CEBPA gene status and expression on the ovarian cancer outcome. The CEBPA gene sequence was analyzed in 118 ovarian cancer patients (44 platinum/cyclophosphamide (PC)-treated and 74 taxane/platinum (TP)-treated), both in tumors and blood samples, and in blood from 236 healthy women, using PCR-Sanger sequencing and Real-Time quantitative PCR (qPCR)-based genotyping methods, respectively. The CEBPA mRNA level was examined with Reverse Transcription quantitative PCR (RT-qPCR). The results were correlated to different clinicopathological parameters. Thirty of 118 (25.4%) tumors harbored the CEBPA synonymous c.690G>T polymorphism (rs34529039), that we showed to be related to up-regulation of CEBPA mRNA levels (p=0.0059). The presence of the polymorphism was significantly associated with poor prognosis (p=0.005) and poor response to the PC chemotherapy regimen (p=0.024). In accordance, elevated CEBPA mRNA levels negatively affected patient survival (pT, p.(Thr230Thr) (rs34529039) polymorphism of the CEBPA gene, together with up-regulation of its mRNA expression, are negative factors worsening ovarian cancer outcome. Their adverse clinical effect depends on a therapeutic regimen used, which might make them potential prognostic and predictive biomarkers for response to DNA-damaging chemotherapy
Weak acids as an alternative anti-microbial therapy
Weak acids such as acetic acid and N-acetyl cysteine (NAC) at pH less than their pKa can effectively eradicate biofilms due to their ability to penetrate the biofilm matrix and the cell membrane. However, the optimum conditions for their activity against drug resistant strains, and safety, need to be understood for their application to treat infections or to inactivate biofilms on hard surfaces. Here, we investigate the efficacy and optimum conditions at which weak acids can eradicate biofilms. We compared the efficacy of various mono and triprotic weak acids such as N-acetyl cysteine (NAC), acetic acid, formic acid and citric acid, in eradicating biofilms. We found that monoprotic weak acids/acid drugs can kill mucoid P. aeruginosa mucA biofilm bacteria provided the pH is less than their pKa, demonstrating that the extracellular biofilm matrix does not protect the bacteria from the activity of the weak acids. Triprotic acids, such as citric acid, kill biofilm bacteria at pH ​< ​pKa1. However, at a pH between pKa1 and pKa2, citric acid is effective in killing the bacteria at the core of biofilm microcolonies but does not kill the bacteria on the periphery. The efficacy of a monoprotic weak acid (NAC) and triprotic weak acid (citric acid) were tested on biofilms formed by Klebsiella pneumoniae KP1, Pseudomonas putida OUS82, Staphylococcus aureus 15981, P. aeruginosa DK1-NH57388A, a mucoid cystic fibrosis isolate and P. aeruginosa PA_D25, an antibiotic resistant strain. We showed that weak acids have a broad spectrum of activity against a wide range of bacteria, including antibiotic resistant bacteria. Further, we showed that a weak acid drug, NAC, can kill bacteria without being toxic to human cells, if its pH is maintained close to its pKa. Thus weak acids/weak acid drugs target antibiotic resistant bacteria and eradicate the persister cells in biofilms which are tolerant to other conventional methods of biofilm eradication
Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach
We consider eigenvectors of the Hamiltonian H0 perturbed by a generic perturbation V modelled by a random matrix from the Gaussian Unitary Ensemble (GUE). Using the super-symmetry approach we derive analytical results for the statistics of the eigenvectors, which are non-perturbative in V and valid for an arbitrary deterministic H0. Further we generalise them to the case of a random H0, focusing, in particular, on the Rosenzweig-Porter model. Our analytical predictions are confirmed by numerical simulations
Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice
BackgroundInfections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies
Charged and Hydrophobic Surfaces on the A Chain of Shiga-Like Toxin 1 Recognize the C-Terminal Domain of Ribosomal Stalk Proteins
Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs
- …