303 research outputs found
Voice symptoms in teachers during distance teaching : a survey during the COVID-19 pandemic in Finland
Purpose Due to the coronavirus disease of 2019 (COVID-19), teachers during the pandemic have had to adapt to online teaching at short notice. This study aims to investigate the voice symptoms and their environmental risk factors as well as the work ability associated with distance teaching and to compare these with symptoms in previous contact teaching. Methods We conducted a survey of 121 primary and secondary school teachers across Finland. The survey was advertised online through social media and the replies collected from voluntarily participating teachers. Results During distance teaching vocal symptoms appeared less often than in school with 71% teachers experiencing them in regular teaching and 44% in distance teaching, VHI result decreased from 7.88 in school teaching to 4.58 in distance teaching. Acoustic conditions were reported to be more suitable in distance teaching with 73% of teachers finding them adequate during distance teaching in comparison to 46% for those in regular teaching. Background noise was the most disturbing factor for a teacher's voice in the classroom and in distance teaching and this was even more conspicuous in the classroom. Also, subjectively experienced poor indoor air quality at school influenced the voice negatively. Further, voice problems were associated with increased subjective stress levels and reduced ability to work. Conclusion Distance teaching has affected teachers' voices in a positive way compared with regular teaching. This difference is likely to be due to better acoustics and indoor air quality in distance teaching conditions.Peer reviewe
Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees
We combine inferred galaxy properties from a semi-analytic galaxy evolution
model incorporating dark matter halo merger trees with new estimates of
supernova and gamma ray burst rates as a function of metallicity from stellar
population synthesis models incorporating binary interactions. We use these to
explore the stellar mass fraction of galaxies irradiated by energetic
astrophysical transients and its evolution over cosmic time, and thus the
fraction which is potentially habitable by life like our own. We find that 18
per cent of the stellar mass in the Universe is likely to have been irradiated
within the last 260 Myr, with GRBs dominating that fraction. We do not see a
strong dependence of irradiated stellar mass fraction on stellar mass or
richness of the galaxy environment. We consider a representative merger tree as
a Local Group analogue, and find that there are galaxies at all masses which
have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but
also that there are galaxies at all masses where the merger history and
associated star formation have rendered galaxies effectively uninhabitable.
This illustrates the need to consider detailed merger trees when evaluating the
cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match
accepted version, with additional discussion of metallicity effect
Impact of iodized table salt on the sensory characteristics of bread, sausage and pickle
Abstract The impact of iodized table salt on the sensory quality of wheat bread, bologna sausage and pickled cucumber was studied. Table salt (NaCl) content of the products was 1.7, 1.2 and 1.7 g/100 g, respectively. Iodine, added as potassium iodide (KI), was incorporated at levels 0, 25, 50 and 100 mg per kg table salt. Odor, flavor, appearance, and texture were evaluated using deviation from reference descriptive analysis (12 panelists, 4 replicates). Each sample was rated against the non-iodized reference sample (0 mg iodine). The retention of iodine during processing and storage was determined chemically. The iodine level 25 mg/kg, corresponding to current recommendations, did not cause sensory changes in tested products. In sausage, 50 and 100 mg/kg levels were associated with minor changes in texture and color. The maximum retention of iodine was 83% for bread, 98% for sausage, and 51% for cucumber. We did not find any sensory obstacle to using iodized table salt in industrial food production. Due to loss in manufacturing and inadequate intakes, iodine additions higher than currently recommended should be considered.Peer reviewe
Spectral diffusion and 14N quadrupole splittings in absorption detected magnetic resonance hole burning spectra of photosynthetic reaction centers
Zero field absorption detected magnetic resonance hole burning measurements were performed on photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis. Extrapolation to zero microwave power yielded pseudohomogeneous linewidths of 2.0 MHz for Rhodopseudomonas viridis, 1.0 and 0.9 MHz for the protonated forms of Rhodobacter sphaeroides R26 with and without monomer bacteriochlorophyll exchanged, and 0.25 MHz as an upper limit for fully deuterated reaction centers of Rhodobacter sphaeroides R26. The measured linewidths were interpreted as being due to unresolved hyperfine interaction between the nuclear spins and the triplet electron spin, the line shape being determined by spectral diffusion among the nuclei. The difference in linewidths between Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis is then explained by triplet delocalization on the special pair in the former, and localization on one dimer half on the latter. In the fully deuterated sample, four quadrupole satellites were observed in the hole spectra arising from the eight 14N nitrogens in the special pair. The quadrupole parameters seem to be very similar for all nitrogens and were determined to =1.25±0.1 MHz and =0.9±0.1 MHz. The Journal of Chemical Physics is copyrighted by The American Institute of Physics
Stochastic to deterministic crossover of fractal dimension for a Langevin equation
Using algorithms of Higuchi and of Grassberger and Procaccia, we study
numerically how fractal dimensions cross over from finite-dimensional Brownian
noise at short time scales to finite values of deterministic chaos at longer
time scales for data generated from a Langevin equation that has a strange
attractor in the limit of zero noise. Our results suggest that the crossover
occurs at such short time scales that there is little chance of
finite-dimensional Brownian noise being incorrectly identified as deterministic
chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev.
E, April, 199
The Influence of the Electron Density in Acyl Protecting Groups on the Selectivity of Galactose Formation
The stereoselective formation of 1,2-cis-glycosidic bonds is a major bottleneck in the synthesis of carbohydrates. We here investigate how the electron density in acyl protecting groups influences the stereoselectivity by fine-tuning the efficiency of remote participation. Electron-rich C4-pivaloylated galactose building blocks show an unprecedented α-selectivity. The trifluoroacetylated counterpart with electron-withdrawing groups, on the other hand, exhibits a lower selectivity. Cryogenic infrared spectroscopy in helium nanodroplets and density functional theory calculations revealed the existence of dioxolenium-type intermediates for this reaction, which suggests that remote participation of the pivaloyl protecting group is the origin of the high α-selectivity of the pivaloylated building blocks. According to these findings, an α-selective galactose building block for glycosynthesis is developed based on rational considerations and is subsequently employed in automated glycan assembly exhibiting complete stereoselectivity. Based on the obtained selectivities in the glycosylation reactions and the results from infrared spectroscopy and density functional theory, we suggest a mechanism by which these reactions could proceed
Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose
Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the β-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged
- …