19 research outputs found

    The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    Get PDF
    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory proteins are delicately balanced. In solid tumours, hypoxia is a common phenomenon. Cells adapt to this environmental stress, so that after repeated periods of hypoxia, selection for resistance to hypoxia induced apoptosis occurs. These resistant tumours probably have a more aggressive phenotype and may have decreased responsiveness to treatment. The key regulator of this process, hypoxia inducible factor 1 (HIF-1), can initiate apoptosis by inducing high concentrations of proapoptotic proteins, such as BNIP3, and can cause stabilisation of p53. However, during hypoxia, antiapoptotic proteins, such as IAP-2, can be induced, whereas the proapoptotic protein Bax can be downregulated. During hypoxia, an intricate balance exists between factors that induce or counteract apoptosis, or even stimulate proliferation. Understanding the regulation of apoptosis during hypoxia and the mechanisms of resistance to apoptosis might lead to more specific treatments for solid tumours

    Variable EBV DNA load distributions and heterogeneous EBV mRNA expression patterns in the circulation of solid organ versus stem cell transplant recipients

    Get PDF
    Epstein-Barr virus (EBV) driven post-transplant lymphoproliferative disease (PTLD) is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n = 5), solid organ transplant recipients (SOT; n = 15), and SOT having chronic elevated EBV-DNA load (n = 12). In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8) or monocytes. All SCT with cell-associated EBV DNA showed BARTs an

    BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator

    No full text
    Epstein-Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive propertie

    Mutation analysis of the HIF-1alpha oxygen-dependent degradation domain in invasive breast cancer

    No full text
    Hypoxia inducible factor-1 (HIF-1) is an important transcription factor that stimulates tumor growth and metastases via several pathways. Activation of HIF-1 depends on the presence of its a-subunit. Hypoxia increases HIF-1α levels by inhibiting prolyl-hydroxylasedmediated hydroxylation and thereby preventing proteosome degradation. Various other mechanisms might also contribute to HIF-1α expression, such as mutation of the oxygen dependent degradation domain (ODD), which prevents binding of prolyl-hydroxylases. Therefore, the presence of ODD mutations was evaluated as a possible explanation for diffuse HIF-1α protein expression often seen in invasive breast cancer. From a group of 200 primary breast cancers, 24 strong diffusely HIF-1α-positive tumor samples were identified with HIF-1α immunohistochemistry. DNA from these tumors was extracted from microdissected paraffin material and, after nested polymerase chain reaction, sequence analysis was performed to detect hif-1α ODD mutations. Additionally, five perinecrotically HIF-1α-positive breast cancers were analyzed as controls. All 24 diffuse and perinecrotic HIF-1α-positive breast cancers showed wild-type DNA sequences in the ODD domain. No mutations seem to occur in the ODD of hif-1α in HIF-1α overexpressing invasive breast cancer, which rules ODD mutations out as a possible explanation for the diffuse HIF-1α expression pattern often seen in this cancer

    c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer

    No full text
    c-Jun is a component of the transcription factor activator protein 1 (AP-1), which binds and activates transcription at TRE/AP-1 elements. Extra- or intracellular signals, including growth factors, transforming oncoproteins, and UV irradiation, stimulate phosphorylation of c-Jun at serine 63/73 and activate c-Jun–dependent transcription. Therefore, activated c-Jun potentially plays an important role in carcinogenesis and cancer progression. To evaluate expression patterns of activated c-Jun in breast cancer in relation to angiogenesis and proliferation, we performed immunohistochemistry on 103 cases of invasive breast cancer with an antibody recognizing phosphorylated c-Jun at serine 73. Activated c-Jun showed a predominantly nuclear expression at the invasive front in 38% of invasive breast cancer cases. Furthermore, expression of activated c-Jun was seen in mitotic cells of the invasive front in 50% of cases. Occasionally, fibroblasts, endothelial cells, and benign breast cells showed nuclear expression. Activated nuclear c-Jun expression showed positive correlations with expression of hyperphosphorylated pRb, vascular endothelial growth factor, and with microvessel density. Mitotic c-Jun expression was associated with pRb and microvessel density. Stromal c-Jun expression showed positive relations with microvessel density. In survival analysis, no significant relation was found with activated c-Jun expression and survival, although a trend with poor survival was found for mitotic cells overexpressing activated c-Jun ( P = .09). Our results show that activated c-Jun is predominantly expressed at the invasive front in breast cancer and is associated with proliferation and angiogenesis. Earlier studies have established a functional, in vitro link between activated c-Jun and tumor angiogenesis. Our present results in breast cancer patients confirm this relation in vivo for the first time. Therefore, c-Jun/AP-1 targeting may provide new ways to block tumor angiogenesis

    Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells

    No full text
    Hypoxia has clinically been associated with resistance to chemotherapy. The aim of this study was to investigate whether hypoxia induces resistance to doxorubicin and mitoxantrone, two common drugs in cancer treatment, in MCF-7 breast cancer cells, and SW1573 non-small lung cancer cells. In addition, the role of drug transporters P-gp, BCRP and MRP1 was analysed. Hypoxia induced resistance in MCF-7 cells to mitoxantrone shifted the IC50 value from 0.09 μM (±0.01) to 0.54 μM (±0.06) under hypoxia, whereas survival of MCF-7 and SW1573 cells in the presence of doxorubicin was not altered. Accumulation of mitoxantrone and daunorubicin, a doxorubicin fluorescent homologue, appeared to be 5.3 and 3.2 times lower inMCF-7 cells, respectively. Cytotoxicity assays showed no increased functionality of the drug transporters P-gp, BCRP and MRP1 under hypoxia. In addition, protein levels of these drug transporters were not changed. Medium of the MCF-7 cells became more acidic under hypoxia thereby causing a decreased uptake of mitoxantrone. Hypoxia induces mitoxantrone resistance in MCF-7 cells not mediated by the three major MDR transporters. Hypoxia-induced acidification may cause this resistance by decreased cellular uptake together with a lowered cytotoxicity due to pH-dependent topoisomerase type II activity

    Conserved mutation of Epstein-Barr virus-encoded BamHI-A Rightward Frame-1 (BARF1) gene in Indonesian nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BamHI-A rightward frame-1 (BARF1) is a carcinoma-specific Epstein-Barr virus (EBV) encoded oncogene. Here we describe the BARF1 sequence diversity in nasopharyngeal carcinoma (NPC), other EBV-related diseases and Indonesian healthy EBV carriers in relation to EBV genotype, viral load and serology markers. Nasopharyngeal brushings from 56 NPC cases, blood or tissue from 15 other EBV-related disorders, spontaneous B cell lines (LCL) from 5 Indonesian healthy individuals and several prototype EBV isolates were analysed by PCR-direct sequencing.</p> <p>Results</p> <p>Most NPC isolates revealed specific BARF1 nucleotide changes compared to prototype B95-8 virus. At the protein level these mutations resulted in 3 main substitutions (V29A, W72G, H130R), which are not considered to cause gross tertiary structure alterations in the hexameric BARF1 protein. At least one amino acid conversion was detected in 80.3% of NPC samples compared to 33.3% of non-NPC samples (p < 0.001) and 40.0% of healthy LCLs (p = 0.074). NPC isolates also showed more frequent codon mutation than non-NPC samples. EBV strain typing revealed most isolates as EBV type 1. The viral load of either NPC or non-NPC samples was high, but only in non- NPC group it related to a particular BARF1 variant. Serology on NPC sera using IgA/EBNA-1 ELISA, IgA/VCA-p18 ELISA and immunoblot score showed no relation with BARF1 sequence diversity (p = 0.802, 0.382 and 0.058, respectively). NPC patients had variable antibody reactivity against purified hexameric NPC-derived BARF1 irrespective of the endogenous BARF1 sequence.</p> <p>Conclusion</p> <p>The sequence variation of BARF1 observed in Indonesian NPC patients and controls may reflect a natural selection of EBV strains unlikely to be predisposing to carcinogenesis. The conserved nature of BARF1 may reflect an important role in EBV (epithelial) persistence.</p

    Epstein-Barr virus-targeted therapy in nasopharyngeal carcinoma

    No full text
    Purpose Despite successful primary treatment of nasopharyngeal carcinoma (NPC), the incidence of distant metastasis remains 25-34 %. Treatment options are limited, and survival is poor. Intratumoural Epstein-Barr virus (EBV) was used as treatment target. In NPC, EBV is present in a latent state, expressing only few non-immunogenic viral products. Gemcitabine and valproic acid can trigger EBV to the lytic state, wherein viral kinases are expressed, making EBV-positive tumour cells susceptible for antiviral therapy with, i.e. valganciclovir, and inducing an EBV-specific immune response. Methods This drug combination was applied in eight patients with EBV-positive NPC, refractory to conventional treatment. The primary endpoints were safety, tolerability and clinical response. Secondary endpoint was to get proof of concept based on biomarkers, i.e. pharmacokinetics, EBV-DNA load in whole blood and nasopharyngeal brushes, EBV-RNA profiling for proof of lytic induction, EBV-IgG and EBV-IgA levels and diversity and EBV-specific T cell response. Results The best observed clinical response was partial in two patients (25 %) and stable disease in three patients (37.5 %). The median survival was 9 months (95 % confidence interval 7-17 months). Effective dose levels were reached. Peaking of EBV-DNA loads in blood and brush proved the biological effect on EBV during most treatment cycles. In one patient, RNA profiling confirmed lytic EBV induction. EBV-IgG and EBV-IgA antibody levels were already high before treatment and did not change during treatment. No changes in EBV-specific T cell response were detected. Conclusion The treatment was safe with manageable side effects, clinical response was observed, and viral activation corroborated
    corecore