34 research outputs found

    Pharmacological control of neutrophil-mediated inflammation: Strategies targeting calcium handling by activated polymorphonuclear leukocytes

    Get PDF
    Unlike most other effector cells of the innate, as well as the adaptive immune systems, the neutrophil is a relatively undiscerning aggressor with scant regard for damage limitation. Although this highly combative, professional phagocyte has become increasingly implicated in the immunopathogenesis of many acute and chronic inflammatory disorders, of both infective and noninfective origin, effective pharmacological strategies to counter neutrophilaggression have remained elusive. Activation of neutrophils results in rapid mobilization of both stored and extracellular Ca2+, resulting in abrupt, usually transient increases in cytosolic Ca2+, which precede, and are a prerequisite for activation of the Ca2+-dependent pro-inflammatory activities of these cells. Mobilization of Ca2+ by, and restoration of Ca2+ homeostasis to activated neutrophils are multistep processes which present a number of potential targets, some well recognized and others noveland unconventional, for the pharmacological control of neutrophil-mediated inflammation. Uncovering these targets represents the primary focus of this review

    Protein kinase C promotes restoration of calcium homeostasis to platelet activating factor-stimulated human neutrophils by inhibition of phospholipase C

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of protein kinase C (PKC) in regulating the activity of phospholipase C (PLC) in neutrophils activated with the chemoattractant, platelet-activating factor (PAF, 20 and 200 nM), was probed in the current study using the selective PKC inhibitors, GF10903X (0.5 - 1 μM) and staurosporine (400 nM).</p> <p>Methods</p> <p>Alterations in cytosolic Ca<sup>2+</sup>, Ca<sup>2+ </sup>influx, inositol triphosphate (IP<sub>3</sub>), and leukotriene B<sub>4 </sub>production were measured using spectrofluorimetric, radiometric and competitive binding radioreceptor and immunoassay procedures, respectively.</p> <p>Results</p> <p>Activation of the cells with PAF was accompanied by an abrupt increase in cytosolic Ca<sup>2+ </sup>followed by a gradual decline towards basal levels. Pretreatment of neutrophils with the PKC inhibitors significantly increased IP<sub>3 </sub>production with associated enhanced Ca<sup>2+ </sup>release from storage vesicles, prolongation of the peak cytosolic Ca<sup>2+ </sup>transients, delayed clearance and exaggerated reuptake of the cation, and markedly increased synthesis of LTB<sub>4</sub>. The alterations in Ca<sup>2+ </sup>fluxes observed with the PKC inhibitors were significantly attenuated by U73122, a PLC inhibitor, as well as by cyclic AMP-mediated upregulation of the Ca<sup>2+</sup>-resequestering endomembrane ATPase.</p> <p>Taken together, these observations are compatible with a mechanism whereby PKC negatively modulates the activity of PLC, with consequent suppression of IP<sub>3 </sub>production and down-regulation of Ca<sup>2+ </sup>mediated pro-inflammatory responses of PAF-activated neutrophils.</p> <p>Conclusion</p> <p>Although generally considered to initiate and/or amplify intracellular signalling cascades which activate and sustain the pro-inflammatory activities of neutrophils and other cell types, the findings of the current study have identified a potentially important physiological, anti-inflammatory function for PKC, at least in neutrophils.</p

    Montelukast: More than a Cysteinyl Leukotriene Receptor Antagonist?

    Get PDF
    The prototype cysteinyl leukotriene receptor antagonist, montelukast, is generally considered to have a niche application in the therapy of exercise- and aspirin-induced asthma. It is also used as add-on therapy in patients whose asthma is poorly controlled with inhaled corticosteroid monotherapy, or with the combination of a long-acting β(2)-agonist and an inhaled corticosteroid. Recently, however, montelukast has been reported to possess secondary anti-inflammatory properties, apparently unrelated to conventional antagonism of cysteinyl leukotriene receptors. These novel activities enable montelukast to target eosinophils, monocytes, and, in particular, the corticosteroid-insensitive neutrophil, suggesting that this agent may have a broader spectrum of anti-inflammatory activities than originally thought. If so, montelukast is potentially useful in the chemotherapy of intermittent asthma, chronic obstructive pulmonary disease, cystic fibrosis, and viral bronchiolitis, which, to a large extent, involve airway epithelial cell/neutrophil interactions. The primary objective of this mini-review is to present evidence for the cysteinyl leukotrien–independent mechanisms of action of montelukast and their potential clinical relevance

    Pneumolysin Mediates Platelet Activation In Vitro

    Get PDF
    This study has explored the role of the pneumococcal toxin, pneumolysin (Ply), in activating human platelets. Following exposure to Ply [10–80 nanograms (ng)/ml], platelet activation and cytosolic Ca2+ concentrations were measured flow cytometrically according to the level of expression of CD62P (P-selectin) and spectrofluorimetrically respectively. Exposure to Ply resulted in marked upregulation of expression of platelet CD62P, achieving statistical significance at concentrations of 40 ng/ml and higher (p<0.05), in the setting of increased influx of Ca2+. These potentially pro-thrombotic actions of Ply were attenuated by depletion of Ca2+ from the extracellular medium, or by exposure of the cells to a pneumolysoid devoid of pore-forming activity. These findings are consistent with a mechanism of Plymediated platelet activation involving sub-lytic pore formation, Ca2+ influx, and mobilization of CD62P-expressing α-granules, which, if operative in vivo, may contribute to the pathogenesis of associated acute lung and myocardial injury during invasive pneumococcal disease.http://link.springer.com/journal/4082017-08-31hb2016HaematologyInternal Medicin

    Aortic arch baroreceptor stimulation in an experimental goat model: a novel method to lower blood pressure

    Get PDF
    The effect of aortic baroreceptor stimulation on blood pressure manipulation was assessed using the goat species Capra aegagrus hircus. The aim of this study was to manipulate blood pressure with future intention to treat high blood pressure in humans. The ages of the animals ranged from 6 months to 2 years. A standard anesthesia protocol was used. A lateral thoracotomy was performed to gain access to the aortic arch. Data was collected with the Vigileo system. Pre stimulation blood pressure was compared with maximum post stimulation blood pressure values. Results were analyzed with the Wilcoxon signed rank test. In the study 38 animals were enrolled. Baroreceptor stimulation was performed for each animal using 3 different electrodes each of which emits an electrical impulse. In the pilot phase of the study, the median baseline blood pressure prior to stimulation of the baroreceptors was 110.8 mmHg. After stimulation the median blood pressure decreased to 88 mmHg. The average decrease in blood pressure was 22.8 mmHg. This decrease of blood pressure after stimulation of the baroreceptors is statistically significant (p < 0.0001) and the proof of concept was shown. During the extended phase all three probes had a significant effect on blood pressure lowering (p < 0.0001). The study confirmed that aortic baroreceptor stimulation has an effect on blood pressure lowering. This is a novel field of blood pressure manipulation. The hemodynamic effects of long-term aortic baroreceptor stimulation are unknown. Further investigations need to be done to determine whether a similar effect can be induced in different species such as primates and humans

    Pulmonary toxicities associated with the use of immune checkpoint inhibitors: an update from the Immuno-Oncology Subgroup of the Neutropenia, Infection & Myelosuppression Study Group of the Multinational Association for Supportive Care in Cancer

    Get PDF
    The development of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, with agents such as nivolumab, pembrolizumab, and cemiplimab targeting programmed cell death protein-1 (PD-1) and durvalumab, avelumab, and atezolizumab targeting PD-ligand 1 (PD-L1). Ipilimumab targets cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). These inhibitors have shown remarkable efficacy in melanoma, lung cancer, urothelial cancer, and a variety of solid tumors, either as single agents or in combination with other anticancer modalities. Additional indications are continuing to evolve. Checkpoint inhibitors are associated with less toxicity when compared to chemotherapy. These agents enhance the antitumor immune response and produce side- effects known as immune-related adverse events (irAEs). Although the incidence of immune checkpoint inhibitor pneumonitis (ICI-Pneumonitis) is relatively low, this complication is likely to cause the delay or cessation of immunotherapy and, in severe cases, may be associated with treatment-related mortality. The primary mechanism of ICIPneumonitis remains unclear, but it is believed to be associated with the immune dysregulation caused by ICIs. The development of irAEs may be related to increased T cell activity against cross-antigens expressed in tumor and normal tissues. Treatment with ICIs is associated with an increased number of activated alveolar T cells and reduced activity of the anti-inflammatory Treg phenotype, leading to dysregulation of T cell activity. This review discusses the pathogenesis of alveolar pneumonitis and the incidence, diagnosis, and clinical management of pulmonary toxicity, as well as the pulmonary complications of ICIs, either as monotherapy or in combination with other anticancer modalities, such as thoracic radiotherapy.http://www.frontiersin.org/Pharmacologyam2022ImmunologyInternal Medicin

    Pneumolysin mediates heterotypic aggregation of neutrophils and platelets <i>in vitro</i>

    Get PDF
    OBJECTIVES: Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A2 (TxA2) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. METHODS: The effects of recombinant Ply (10–80 ng mL−1) on the production of PAF and TxA2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. RESULTS: Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA2, achieving statistical significance at ≥20 ng mL−1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL−1 of the toxin, but did not involve either PAF or TxA2. CONCLUSION: Ply induces synthesis of PAF and TxA2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection.South African National Research Foundation (NRF)http://www.elsevierhealth.com/journals/jinf2018-06-30hj2017HaematologyImmunologyInternal Medicin

    Clofazimine, but Not Isoniazid or Rifampicin, Augments Platelet Activation in vitro

    Get PDF
    Although the inclusion of the cationic amphiphilic, anti-mycobacterial agent, clofazimine, in the chemotherapeutic regimens of patients with multidrug-resistant tuberculosis (TB) has contributed to improved outcomes, concerns remain about the cardiotoxic potential of this agent. Accordingly, the current study was undertaken with the primary objective of investigating the effects of clofazimine, on the reactivity of human platelets in vitro, a seemingly unexplored, mechanism of cardiotoxicity. Platelet-rich plasma (PRP) prepared from the blood of healthy, adult humans was treated with clofazimine (0.625–10 mg/L), or the primary anti-TB agents, isoniazid and rifampicin (at final concentrations of 5 and 10 mg/L), followed by addition of either adenosine 5′-diphosphate (ADP) or thrombin and measurement of platelet activation according to the magnitude of expression of CD62P (P-selectin), as well as the CD62P-mediated formation of heterotypic neutrophil:platelet (NP) aggregates, using flow cytometry. Clofazimine, but neither isoniazid nor rifampicin, caused dose-related potentiation of both ADP- and thrombin-activated expression of CD62P by platelets, achieving statistical significance at threshold concentrations of 0.625 and 2.5 mg/L, respectively, as well as significant formation of N:P aggregates. These stimulatory effects of clofazimine on platelet activation were partly attenuated by pre-treatment of PRP with the membrane-stabilizing agent, α-tocopherol, possibly consistent with a membrane-disruptive mechanism. In conclusion, clofazimine, at concentrations within the therapeutic range, augments platelet activation in vitro, probably by a mechanism linked to membrane destabilization. If operative in vivo, these pro-thrombotic activities of clofazimine may predispose for development of microvascular occlusion, exacerbating an already existing high risk for development of TB-associated cardiovascular disease

    Decreased severity of disease during the first global Omicron variant COVID-19 outbreak in a large hospital in Tshwane, South Africa

    Get PDF
    INTRODUCTION : The coronavirus disease 2019 (COVID-19) first reported in Wuhan, China in December 2019 is a global pandemic that is threatening the health and wellbeing of people worldwide. To date there have been more than 274 million reported cases and 5.3 million deaths. The Omicron variant first documented in the City of Tshwane, Gauteng Province, South Africa on 9 November 2021 led to exponen- tial increases in cases and a sharp rise in hospital admissions. The clinical profile of patients admitted at a large hospital in Tshwane is compared with previous waves. METHODS : 466 hospital COVID-19 admissions since 14 November 2021 were compared to 3962 admis- sions since 4 May 2020, prior to the Omicron outbreak. Ninety-eight patient records at peak bed occu- pancy during the outbreak were reviewed for primary indication for admission, clinical severity, oxygen supplementation level, vaccination and prior COVID-19 infection. Provincial and city-wide daily cases and reported deaths, hospital admissions and excess deaths data were sourced from the National Institute for Communicable Diseases, the National Department of Health and the South African Medical Research Council. RESULTS : For the Omicron and previous waves, deaths and ICU admissions were 4.5% vs 21.3% (p < 0.0 0 0 01), and 1% vs 4.3% (p < 0.0 0 0 01) respectively; length of stay was 4.0 days vs 8.8 days; and mean age was 39 years vs 49,8 years. Admissions in the Omicron wave peaked and declined rapidly with peak bed occupancy at 51% of the highest previous peak during the Delta wave. Sixty two (63%) patients in COVID-19 wards had incidental COVID-19 following a positive SARS-CoV-2 PCR test . Only one third (36) had COVID-19 pneumonia, of which 72% had mild to moderate disease. The remaining 28% required high care or ICU admission. Fewer than half (45%) of patients in COVID-19 wards required oxygen supplementation compared to 99.5% in the first wave. The death rate in the face of an exponential increase in cases during the Omicron wave at the city and provincial levels shows a decoupling of cases and deaths compared to previous waves, corroborating the clinical findings of decreased severity of disease seen in patients admitted to the Steve Biko Academic Hospital. CONCLUSION : There was decreased severity of COVID-19 disease in the Omicron-driven fourth wave in the City of Tshwane, its first global epicentre.The South African Medical Research Council.http://www.elsevier.com/locate/ijidam2023Critical CareInternal MedicineObstetrics and GynaecologyPaediatrics and Child HealthSchool of Health Systems and Public Health (SHSPH
    corecore