248 research outputs found

    Tranquillity and soundscapes in urban green spaces Âż predicted and actual assessments from a questionnaire survey.

    Get PDF
    A pilot study had previously demonstrated the utility of a tranquillity prediction tool TRAPT for use in 3 green open spaces in a densely populated area. This allows the calculation of perceived levels of tranquillity in open spaces. The current study expands the range of sites to 8 and importantly considers the views of visitors to these spaces. In total 252 face to face interviews were conducted in these spaces. An important aim of the survey was to determine the extent to which reported tranquillity obtained from the questionnaire survey could be predicted by a previously developed prediction tool TRAPT. A further aim was to determine what additional factors may need to be considered in addition to the purely physical descriptors in TRAPT. The questions included the sounds and sights that were noticed, factors affecting tranquillity as well as questions relating to the benefits of visiting these areas. Predictions were considered satisfactory and could be further improved by taking account of issues surrounding personal safety. Examining the trends in these data it was also shown that the percentage of people feeling more relaxed after visiting the spaces was closely related to overall assessments of perceived tranquillity. Further trends and their implications are presented and discussed in the paper.Made available in full text March 2014 at the end of the publisher's embargo period

    Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand

    Get PDF
    Energy poverty, defined as a lack of access to reliable electricity and reliance on traditional biomass resources for cooking, affects over a billion people daily. The World Health Organization estimates that household air pollution from inefficient stoves causes more premature deaths than malaria, tuberculosis, and HIV/AIDS. Increasing demand for energy has led to dramatic increases in emissions. The need for reliable electricity and limiting emissions drives research on Resilient Hybrid Energy Systems (RHESs), which provide cleaner energy through combining wind, solar, and biomass energy with traditional fossil energy, increasing production efficiency and reliability and reducing generating costs and emissions. Microgrids have been shown as an efficient means of implementing RHESs, with some focused mainly on reducing the environmental impact of electric power generation. The technical challenges of designing, implementing, and applying microgrids involve conducting a cradle-to-grave Life Cycle Analysis (LCA) to evaluate these systems\u27 environmental and economic performance under diverse operating conditions to evaluate resiliency. A sample RHES was developed and used to demonstrate the implementation in rural applications, where the system can provide reliable electricity for heating, cooling, lighting, and pumping clean water. The model and findings can be utilized by other regions around the globe facing similar challenges

    Caged Black Holes: Black Holes in Compactified Spacetimes I -- Theory

    Full text link
    In backgrounds with compact dimensions there may exist several phases of black objects including the black-hole and the black-string. The phase transition between them raises puzzles and touches fundamental issues such as topology change, uniqueness and Cosmic Censorship. No analytic solution is known for the black hole, and moreover, one can expect approximate solutions only for very small black holes, while the phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a forthcoming paper. Goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. Predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the ``overall numerical error''. Field asymptotics and expressions for physical quantities in terms of the numerical ones are supplied. Techniques include ``method of equivalent charges'', free energy, dimensional reduction, and analytic perturbation for small black holes.Comment: 23 pages. v3: version to be published in PRD, 3 references adde

    Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings

    Full text link
    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3: erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and accompanying discussion amended. In the journal version these corrections appear as an appended erratum. No major changes involve

    A boundary value problem for the five-dimensional stationary rotating black holes

    Full text link
    We study the boundary value problem for the stationary rotating black hole solutions to the five-dimensional vacuum Einstein equation. Assuming the two commuting rotational symmetry and the sphericity of the horizon topology, we show that the black hole is uniquely characterized by the mass, and a pair of the angular momenta.Comment: 16 pages, no figure

    A Charged Rotating Black Ring

    Full text link
    We construct a supergravity solution describing a charged rotating black ring with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring recently found by Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3, where J is the angular momentum and M the mass; the black ring saturating this bound has maximum entropy for the given mass. The charged black ring is characterized by mass M, angular momentum J, and electric charge Q, and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring helps support the ring against its gravitational self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the singularity.Comment: 25 pages, 1 figur

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n≥4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio

    Black Rings, Supertubes, and a Stringy Resolution of Black Hole Non-Uniqueness

    Full text link
    In order to address the issues raised by the recent discovery of non-uniqueness of black holes in five dimensions, we construct a solution of string theory at low energies describing a five-dimensional spinning black ring with three charges that can be interpreted as D1-brane, D5-brane, and momentum charges. The solution possesses closed timelike curves (CTCs) and other pathologies, whose origin we clarify. These pathologies can be avoided by setting any one of the charges, e.g. the momentum, to zero. We argue that the D1-D5-charged black ring, lifted to six dimensions, describes the thermal excitation of a supersymmetric D1-D5 supertube, which is in the same U-duality class as the D0-F1 supertube. We explain how the stringy microscopic description of the D1-D5 system distinguishes between a spherical black hole and a black ring with the same asymptotic charges, and therefore provides a (partial) resolution of the non-uniqueness of black holes in five dimensions.Comment: 33 pages, 1 figur

    Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes

    Full text link
    We construct and analyze a large class of exact five- and six-dimensional regular and static solutions of the vacuum Einstein equations. These solutions describe sequences of Kaluza-Klein bubbles and black holes, placed alternately so that the black holes are held apart by the bubbles. Asymptotically the solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In particular, they occupy a hitherto unexplored region of the phase diagram, since their relative tension exceeds that of the uniform black string. The solutions contain bubbles and black holes of various topologies, including six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against gravitational collapse. We find two maps between solutions, one that relates five- and six-dimensional solutions, and another that relates solutions in the same dimension by interchanging bubbles and black holes. To illustrate the richness of the phase structure and the non-uniqueness in the (\mu,n) phase diagram, we consider in detail particular examples of the general class of solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.

    Quest for Localized 4-D Black Holes in Brane Worlds

    Get PDF
    We investigate the possibility of obtaining localized black hole solutions in brane worlds by introducing a dependence of the four-dimensional line--element on the extra dimension. An analysis, performed for the cases of an empty bulk and of a bulk containing either a scalar or a gauge field, reveals that no conventional type of matter can support such a dependence. Considering a particular ansatz for the five-dimensional line--element that corresponds to a black hole solution with a ``decaying'' horizon, we determine the bulk energy--momentum tensor capable of sustaining such a behaviour. It turns out that an exotic, shell-like distribution of matter is required. For such solutions, the black hole singularity is indeed localized near the brane and the spacetime is well defined near the AdS horizon, in contrast to the behaviour found in black string type solutions.Comment: 17 pages, RevTex, 3 figures, version to appear in Physical Review D, comments and references added, typos correcte
    • …
    corecore