32 research outputs found
Time surveying : clock synchronization over packet networks
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 165-166).by Gregory D. Troxel.Ph.D
Cognitive Information Processing
Contains research objectives and summary of research on fourteen research projects and reports on four research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346)National Science Foundation (Grant EPP74-12653)National Science Foundation (Grant ENG74-24344)National Institutes of Health (Grant 2 PO1 GM19428-04)Swiss National Funds for Scientific ResearchM.I.T. Health Sciences Fund (Grant 76-11)National Institutes of Health (Grant F03 GM58698)National Institutes of Health (Biomedical Sciences Support Grant)Associated Press (Grant
Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z ¼ f0.45; 0.67; 1.00g. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial SKYNET photo-z nðzÞ. We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σcrit, finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of nðzÞ of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis
A hierarchical proof of an algorithm for deadlock recovery in a system using remote procedure calls
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1990.Includes bibliographical references (leaves 116-117).by Gregory D. Troxel.M.S
Adaptive dynamic radio open-source intelligent team (ADROIT): Cognitively-controlled collaboration among SDR nodes
Abstract — We have created a sensor-sharing protocol that uses cognition to increase performance by choosing protocol parameters based on the current environment and the past relationships between environment and performance. We have constructed a prototype of the protocol, and experimented with it in a four-node outdoor testbed. Our testbed is part of a larger effort, ADROIT, which seeks to create cognitive teams of software-defined radios [1].