22 research outputs found
Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder
Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination
BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease
One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings
Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C
Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings
Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C
Genetic association of major depression with a typical features and obesity-related immunometabolic dysregulations
© 2017 American Medical Association. All rights reserved.IMPORTANCE The association between major depressive disorder (MDD) and obesitymay stem from shared immunometabolic mechanisms particularly evident in MDD with atypical features, characterized by increased appetite and/or weight (A/W) during an active episode. OBJECTIVE To determine whether subgroups of patients with MDD stratified according to the A/W criterion had a different degree of genetic overlap with obesity-related traits (body mass index [BMI] and levels of C-reactive protein [CRP] and leptin). DESIGN, SETTING, AND PATIENTS This multicenter study assembled genome-wide genotypic and phenotypic measures from 14 data sets of the Psychiatric Genomics Consortium. Data sets were drawn from case-control, cohort, and population-based studies, including 26 628 participants with established psychiatric diagnoses and genome-wide genotype data. Data on BMI were available for 15 237 participants. Data were retrieved and analyzed from September 28, 2015, through May 20, 2017. MAIN OUTCOMES AND MEASURES Lifetime DSM-IV MDDwas diagnosed using structured diagnostic instruments. Patients with MDD were stratified into subgroups according to change in the DSM-IV A/W symptoms as decreased or increased. RESULTS Data included 11 837 participants with MDD and 14 791 control individuals, for a total of 26 628 participants (59.1% female and 40.9%male). Among participants with MDD, 5347 (45.2%) were classified in the decreased A/W and 1871 (15.8%) in the increased A/W subgroups. Common genetic variants explained approximately 10% of the heritability in the 2 subgroups. The increased A/W subgroup showed a strong and positive genetic correlation (SE) with BMI (0.53 [0.15]; P = 6.3 × 10-4), whereas the decreased A/W subgroup showed an inverse correlation (-0.28 [0.14]; P = .06). Furthermore, the decreased A/W subgroup had a higher polygenic risk for increased BMI (odds ratio [OR], 1.18; 95%CI, 1.12-1.25; P = 1.6 × 10-10) and levels of CRP (OR, 1.08; 95%CI, 1.02-1.13; P = 7.3 × 10-3) and leptin (OR, 1.09; 95%CI, 1.06-1.12; P = 1.7 × 10-3). CONCLUSIONS AND RELEVANCE The phenotypic associations between atypical depressive symptoms and obesity-related traits may arise from shared pathophysiologic mechanisms in patients with MDD. Development of treatments effectively targeting immunometabolic dysregulations may benefit patients with depression and obesity, both syndromes with important disability