6 research outputs found

    Treatment of Painful Nerves in the Abdominal Wall Using Processed Nerve Allografts

    No full text
    Summary:. Neuromas can be a debilitating cause of pain and often negatively affect patients’ quality of life. One effective method of treatment involves surgical resection of the painful neuroma and use of a processed nerve allograft to repair the injured nerve segment. Giving the nerve “somewhere to go and something to do” has been shown to effectively alleviate pain in upper and lower extremities. We present the first report of this concept to treat a painful neuroma of the abdominal wall that developed following a laparoscopic gastric bypass. The neuroma was excised, and the affected nerve was reconstructed using a processed nerve allograft as an interposition graft, with resolution of pain and gradual return of normal sensation. Patient-reported outcomes were measured using the Patient Reported Outcomes Measurement Information System. Neuroma excision with concurrent interposition grafting using processed nerve allografts may be a promising method of treatment for postsurgical painful neuromas of the trunk

    Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee

    No full text
    Background:. Excess residual limb fat is a common problem that can impair prosthesis control and negatively impact gait. In the general population, thighplasty and liposuction are commonly performed for cosmetic reasons but not specifically to improve function in amputees. The objective of this study was to determine if these procedures could enhance prosthesis fit and function in an overweight above-knee amputee. Methods:. We evaluated the use of these techniques on a 50-year-old transfemoral amputee who was overweight. The patient underwent presurgical imaging and tests to measure her residual limb tissue distribution, socket-limb interface stiffness, residual femur orientation, lower-extremity function, and prosthesis satisfaction. A medial thighplasty procedure with circumferential liposuction was performed, during which 2,812 g (6.2 lbs.) of subcutaneous fat and skin was removed from her residual limb. Imaging was repeated 5 months postsurgery; functional assessments were repeated 9 months postsurgery. Results:. The patient demonstrated notable improvements in socket fit and in performing most functional and walking tests. Her comfortable walking speed increased 13.3%, and her scores for the Sit-to-Stand and Four Square Step tests improved over 20%. Femur alignment in her socket changed from 8.13 to 4.14 degrees, and analysis showed a marked increase in the socket-limb interface stiffness. Conclusions:. This study demonstrates the potential of using a routine plastic surgery procedure to modify the intrinsic properties of the limb and to improve functional outcomes in overweight or obese transfemoral amputees. This technique is a potentially attractive option compared with multiple reiterations of sockets, which can be time-consuming and costly

    A Consensus Approach for Targeted Muscle Reinnervation in Amputees

    No full text
    Amputations have been performed with few modifications since the dawn of surgery. Blood vessels are ligated, bones are shortened, and nerves are cut. In a percentage of people, this can result in severe neuropathic, residual limb, and phantom limb pain. Targeted muscle reinnervation is a surgical procedure initially conceived to optimize function for myoelectric prostheses in amputees. Recently, it has been adopted more widely by surgeons for the prevention and treatment of neuropathic pain. Perhaps as a function of its relatively recent development, many authors perform this operation differently, and there has been no overall agreement regarding the principles, indications, technical specifics, and postoperative management guidelines. This article is written as a consensus statement by surgeons focused on the treatment of neuropathic pain and those with extensive experience performing targeted muscle reinnervation. It is designed to serve as a roadmap and template for extremity surgeons to consider when performing targeted muscle reinnervation
    corecore