75 research outputs found
Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates
Logarithmic corrections to the extremal black hole entropy can be computed
purely in terms of the low energy data -- the spectrum of massless fields and
their interaction. The demand of reproducing these corrections provides a
strong constraint on any microscopic theory of quantum gravity that attempts to
explain the black hole entropy. Using quantum entropy function formalism we
compute logarithmic corrections to the entropy of half BPS black holes in N=2
supersymmetric string theories. Our results allow us to test various proposals
for the measure in the OSV formula, and we find agreement with the measure
proposed by Denef and Moore if we assume their result to be valid at weak
topological string coupling. Our analysis also gives the logarithmic
corrections to the entropy of extremal Reissner-Nordstrom black holes in
ordinary Einstein-Maxwell theory.Comment: LaTeX file, 66 page
Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas
The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n (e) = 0.7 x 10(21) A center dot 1.1 x 10(22) cm(-3)) and Be2+ (at T = 20 eV, n (e) = 2.5 x 10(23) cm(-3)) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n (e) = 1.74 x 10(20), 1.11 x 10(22) cm(-3) using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of omega and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.The work has been realised at the Humboldt University at Berlin (Germany). One of the authors (S. P. Sadykova) would like to express sincere thanks to the Erasmus Mundus Program of the EU for the financial support and especially to Mr. M. Parske for his aid, to the Institute of Physics, Humboldt University at Berlin, for the support which made her participation at some scientific Conferences possible; I. M. T. acknowledges the financial support of the Spanish Ministerio de Educacion y Ciencia Project No. ENE2007-67406-C02-02/FTN and valuable discussions with Dr. D. Gericke.Sadykova, SP.; Ebeling, W.; Tkachenko Gorski, IM. (2011). Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. European Physical Journal D. 61(1):117-130. https://doi.org/10.1140/epjd/e2010-10118-yS117130611G. Gregori, O.L. Landen, S.H. Glenzer, Phys. Rev. E 74, 026402 (2006)G. Gregori, A. Ravasio, A. Höll, S.H. Glenzer, S.J. Rose, High Energy Density Physics 3, 99 (2007)V.M. Adamyan, I.M. Tkachenko, Teplofiz. Vys. Temp. 21, 417 (1983) [High Temp. (USA) 21, 307 (1983)]V.M. Adamyan, T. Meyer, I.M. Tkachenko, Fiz. Plazmy 11, 826 (1985) [Sov. J. Plasma Phys. 11, 481 (1985)]S.V. Adamjan, I.M. Tkachenko, J.L. Muñoz-Cobo, G. Verdú Martín, Phys. Rev. E 48, 2067 (1993)V.M. Adamyan, I.M. Tkachenko, Contrib. Plasma Phys. 43, 252 (2003)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 76 (2009)M.J. Rosseinsky, K. Prassides, Nature 464, 39 (2010)Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier, Amsterdam, 1989), Materials Science Monographs, Vol. 57A.N. Klyucharev, N.N. Bezuglov, A.A. Matveev, A.A. Mihajlov, Lj.M. Ignjatović, M.S. Dimitrijević, New Astron. Rev. 51, 547 (2007)F. Hensel, Liquid Metals, edited by R. Evans, D.A. Greenwood, IOP Conf. Ser. No. 30 (IPPS, London, 1977)F. Hensel, S. Juengst, F. Noll, R. Winter, In Localisation and Metal Insulator Transitions, edited by D. Adler, H. Fritsche (Plenum Press, New York, 1985)N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)H. Hess, Physics of nonideal plasmas, edited by W. Ebeling, A. Foerster, R. Radtke, B.G. Teubner (Leipzig, 1992)V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 388 (2009)H. Ebert, Physikalisches Taschenbuch (F. Vieweg & Sohn, Braunschweig, 1967)S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen, Phys. Rev. Lett. 90, 175002 (2003)G. Gregori, S.H. Glenzer, H.-K. Chung, D.H. Froula, R.W. Lee, N.B. Meezan, J.D. Moody, C. Niemann, O.L. Landen, B. Holst, R. Redmer, S.P. Regan, H. Sawada, J. Quant. Spectrosc. Radiat. Transfer 99, 225237 (2006)D. Riley, N.C. Woolsey, D. McSherry, I. Weaver, A. Djaoui, E. Nardi, Phys. Rev. Lett. 84, 1704 (2000)S.H. Glenzer, Phys. Rev. Lett. 98, 065002 (2007)J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)A. Höll, Th. Bornath, L. Cao, T. Döppner, S. Düsterer, E. Föster, C. Fortmann, S.H. Glenzer, G. Gregori, T. Laarmann, K.-H. Meiwes-Broer, A. Przystawik, P. Radcliffe, R. Redmer, H. Reinholz, G. Röpke, R. Thiele, J. Tiggesbäumker, S. Toleikis, N.X. Truong, T. Tschentscher, I. Ushmann, U. Zastrau, High Energy Density Phys. 3, 120 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, G.M. Meirkhanova, I.M. Tkachenko, Phys. Rev. E 76, 026403 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, I.M. Tkachenko, G. Zwicknagel, Phys. Rev. E 81, 026402 (2010)J.P. Hansen, I.R. Mc. Donald, Phys. Rev. A 23, 2041 (1981)J.P. Hansen, E.L. Polock, I.R. McDonald, Phys. Rev. Lett. 32, 277 (1974)V. Schwarz, B. Holst, T. Bornath, C. Fortmann, W-D. Kraeft, R. Thiele, R. Redmer, G. Gregori, H. Ja Leed, T. Döppner, S.H. Glenzer, High Energy Density Phys. 5, 1 (2009)D.O. Gericke, K. Wünsch, J. Vorberger, Nucl. Instrum. Methods Phys. Res. A 606, 142 (2009)B. Bernu, D. Ceperley, Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale, C. Umrigar (Kluwer Academic Publishers, Boston, 1999), NATO ASI Series, Series C, Mathematical and Physical Sciences, Vol. C-525G. Kelbg, Ann. Physik 13 354 (1964)C. Deutsch, Phys. Lett. A 60, 317 (1977)H. Minoo, M.M. Gombert, C. Deutsch, Phys. Rev. A 23, 924 (1981)W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A. 36, 5957 (2003)H. Hellmann, J. Chem. Phys. 3, 61 (1935)H. Hellmann, Acta Fizicochem. USSR 1, 913 (1935)H. Hellmann, Acta Fizicochem. USSR 4, 225 (1936)H. Hellmann, W. Kassatotschkin, Acta Fizicochem. USSR 5, 23 (1936)W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966)V. Heine, M.L. Cohen, D. Weaire, Psevdopotenzcial'naya Teoriya (Mir, Moskva, 1973)V. Heine, The pseudopotential concept, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Physics 24, 1 (Academic, New York 1970)G.L. Krasko, Z.A. Gurskii, JETP Lett. 9, 363 (1969)W. Ebeling, W.-D. Kraeft, D. Kremp, Theory of Bound State and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976)W. Zimdahl, W. Ebeling, Ann. Phys. (Leipzig) 34, 9 (1977)W. Ebeling, C.-V. Meister, R. Saendig, 13 ICPIG (Berlin, 1977) 725W. Ebeling, C.V. Meister, R. Saendig, W.-D. Kraeft, Ann. Phys. 491, 321 (1979)N.N. Bogolyubov, Dynamical Theory Problems in Statistical Physics (in Russian) (GITTL, Moscow, 1946)N.N. Bogolyubov, Studies in Statistical Mechanics, Engl. Transl., edited by J. De Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1962)H. Falkenhagen, Theorie der Elektrolyte (S. Hirzel Verlag, Leipzig, 1971), p. 369Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)P. Seuferling, J. Vogel, C. Toepffer, Phys. Rev. A 40, 323 (1989)L. Szasz, Pseudopotential Theory of Atoms and Molecules (Wiley-Intersc., New York, 1985)W.H.E. Schwarz, Acta Phys. Hung. 27, 391 (1969)W.H.E. Schwarz, Theor. Chim. Acta 11, 307 (1968)N.P. Kovalenko, Yu.P. Krasnyj, U. Krey, Physics of Amorphous Metalls (Wiley-VCH, Weinheim, 2001)Z.A. Gurski, G.L. Krasko, Doklady Akademii Nauk SSSR (in Russian) 197, 810 (1971)C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, Phys. Rev. B 51, 14001 (1995)S.S. Dalgic, S. Dalgic, G. Tezgor, Phys. Chem. Liq. 40, 539, (2002)E.M. Apfelbaum, Phys. Chem. Liq., 48, 534 (2010)Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)W. Ebeling, J. Ortner, Physica Scripta T 75, 93 (1998)J. Ortner, F. Schautz, W. Ebeling, Phys. Rev. E 56, 4665 (1997)N.I. Akhieser, The classical Moment Problem (Oliver and Boyd, London, 1965)M.G. Krein, A.A. Nudel'man, The Markov Moment Problem and External Problems (American Mathematical Society, Translations, New York, 1977)M.J. Corbatón, I.M. Tkachenko, Int. Conference on Strongly Coupled Coulomb Systems (SCCS2008), Camerino, Italy, July-August, 2008, Book of Abstracts, p. 90V.M. Adamyan, A.A. Mihajlov, N.M. Sakan, V.A. Srećković, I.M. Tkachenko, J. Phys. A: Math. Theor. 42, 214005 (2009)S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (Addison-Wesley, Redwood City, 1992)W. Ebeling, A. Foerster, W. Richert, H. Hess, Physics A 150, 159 (1988)H. Wagenknecht, W. Ebeling, A. Förster, Contrib. Plasma Phys. 41, 15 (2001
The Germani Corporis Custodes: a “unit in motion”?
FGW – Publications not associated with a particular research are
Geomarketing in the "wellbeing industry": new analysis model for management service providers
LSA Pubblication n° 10
- …