6 research outputs found

    On quantum error-correction by classical feedback in discrete time

    Full text link
    We consider the problem of correcting the errors incurred from sending quantum information through a noisy quantum environment by using classical information obtained from a measurement on the environment. For discrete time Markovian evolutions, in the case of fixed measurement on the environment, we give criteria for quantum information to be perfectly corrigible and characterize the related feedback. Then we analyze the case when perfect correction is not possible and, in the qubit case, we find optimal feedback maximizing the channel fidelity.Comment: 11 pages, 1 figure, revtex

    Optimality of private quantum channels

    Full text link
    We addressed the question of optimality of private quantum channels. We have shown that the Shannon entropy of the classical key necessary to securely transfer the quantum information is lower bounded by the entropy exchange of the private quantum channel E\cal E and von Neumann entropy of the ciphertext state ϱ(0)\varrho^{(0)}. Based on these bounds we have shown that decomposition of private quantum channels into orthogonal unitaries (if exists) is optimizing the entropy. For non-ancillary single qubit PQC we have derived the optimal entropy for arbitrary set of plaintexts. In particular, we have shown that except when the (closure of the) set of plaintexts contains all states, one bit key is sufficient. We characterized and analyzed all the possible single qubit private quantum channels for arbitrary set of plaintexts. For the set of plaintexts consisting of all qubit states we have characterized all possible approximate private quantum channels and we have derived the relation between the security parameter and the corresponding minimal entropy.Comment: no commen

    Reversibility of continuous-variable quantum cloning

    Full text link
    We analyze a reversibility of optimal Gaussian 1→21\to 2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anti-clone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial LOCC reversal of the cloning and we show that this procedure converts the symmetric cloner to an asymmetric cloner. Further, we discuss a distributed LOCC reversal in optimal 1→M1\to M Gaussian cloning of coherent states which transforms it to optimal 1→M′1\to M' cloning for M′<MM'<M. Assuming the quantum cloning as a possible eavesdropping attack on quantum communication link, the reversibility can be utilized to improve the security of the link even after the attack.Comment: 7 pages, 5 figure

    Quantum lost and found

    No full text
    corecore