3 research outputs found

    Mechanical testing of a device for subcutaneous internal anterior pelvic ring fixation versus external pelvic ring fixation

    Get PDF
    BACKGROUND: Although useful in the emergency treatment of pelvic ring injuries, external fixation is associated with pin tract infections, the patient’s limited mobility and a restricted surgical accessibility to the lower abdomen. In this study, the mechanical stability of a subcutaneous internal anterior fixation (SIAF) system is investigated. METHODS: A standard external fixation and a SIAF system were tested on pairs of Polyoxymethylene testing cylinders using a universal testing machine. Each specimen was subjected to a total of 2000 consecutive cyclic loadings at 1 Hz with sinusoidal lateral compression/distraction (+/−50 N) and torque (+/− 0.5 Nm) loading alternating every 200 cycles. Translational and rotational stiffness were determined at 100, 300, 500, 700 and 900 cycles. RESULTS: There was no significant difference in translational stiffness between the SIAF and the standard external fixation when compared at 500 (p = .089), 700 (p = .081), and 900 (p = .266) cycles. Rotational stiffness observed for the SIAF was about 50 percent higher than the standard external fixation at 300 (p = .005), 500 (p = .020), and 900 (p = .005) cycles. No loosening or failure of the rod-pin/rod-screw interfaces was seen. CONCLUSIONS: In comparison with the standard external fixation system, the tested device for subcutaneous internal anterior fixation (SIAF) in vitro has similar translational and superior rotational stiffness

    Biomechanical comparison of different external fixation configurations for posttraumatic pelvic ring instability

    Full text link
    Background. External fixation is useful in the primary treatment of pelvic ring injuries. The present study compared the biomechanical stability of five different configurations of an external pelvic ring fixation system. Methods. Five configurations of an anterior external pelvic ring fixation system were tested using a universal testing machine. One single connecting rod was used in group “SINGLE,” two parallel connecting rods in group “DOUBLE,” two and four rods, respectively, in a tent-like configuration in groups “SINGLE TENT” and “DOUBLE TENT,” and a rhomboid-like configuration in group “RHOMBOID.” Each specimen was subjected to a total of 2000 consecutive cyclic loadings at 1 Hz lateral compression/distraction (±50 N) and torque (±0.5 Nm) loading alternating every 200 cycles. Translational and rotational stiffness were determined at 100, 300, 500, 700, and 900 cycles. Results. The “SINGLE TENT” and “RHOMBOID” configurations already failed with a preloading of 50 N compression force. The “DOUBLE” configuration had around twice the translational stability compared with the “SINGLE” and “DOUBLE TENT” configurations. Rotational stiffness observed for the “DOUBLE” and “DOUBLE TENT” configurations was about 50% higher compared to the SINGLE configuration. Conclusion. Using two parallel connecting rods provides the highest translational and rotational stability
    corecore