75 research outputs found

    Microtubule Organization: A Pericentriolar Material-Like Structure in Yeast Meiosis

    Get PDF
    SummaryDuring meiotic prophase in fission yeast, the nucleus undergoes dramatic oscillatory movements. A newly identified structure, the radial microtubule organizing center (rMTOC), mediates these movements and shares some of the features of the pericentriolar material in higher eukaryotes

    Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast

    Get PDF
    BACKGROUND: Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. RESULTS: Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase α-primase and the GINS (Sld5-Psf1-Psf2-Psf3) complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1) is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase α-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. CONCLUSION: An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase α-primase to chromatin

    Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of <it>Saccharomyces cerevisiae, Candida albicans </it>and <it>Candida glabrata </it>cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis.</p> <p>Results</p> <p>To identify the cellular processes affected by CTBT, we screened the systematic haploid deletion mutant collection for CTBT sensitive mutants. We identified 169 hypersensitive deletion mutants. The deleted genes encode proteins mainly involved in mitochondrial functions, DNA repair, transcription and chromatin remodeling, and oxidative stress response. We found that the susceptibility of yeast cells to CTBT depends on molecular oxygen. Transcriptome analysis of the immediate early response to CTBT revealed rapid induction of oxidant and stress response defense genes. Many of these genes depend on the transcription factors Yap1 and Cin5. Yap1 accumulates rapidly in the nucleus in CTBT treated cells suggesting acute oxidative stress. Moreover, molecular calculations supported a superoxide generating activity of CTBT. Superoxide production <it>in vivo </it>by CTBT was found associated to mitochondria as indicated by oxidation of MitoSOX Red.</p> <p>Conclusion</p> <p>We conclude that CTBT causes intracellular superoxide production and oxidative stress in fungal cells and is thus enhancing antimycotic drug effects by a secondary stress.</p

    Disadvantages for families

    No full text

    Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines

    No full text
    Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N′-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical (GOR), and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect

    How Might DNA Enter the Cohesin Ring?

    No full text
    corecore