5 research outputs found

    A geometric basis for the standard-model gauge group

    Full text link
    A geometric approach to the standard model in terms of the Clifford algebra Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor for one generation of leptons and quarks. Spinor transformations separate into left-sided ("exterior") and right-sided ("interior") types. By definition, Poincare transformations are exterior ones. We consider all rotations in the seven-dimensional space that (1) conserve the spacetime components of the particle and antiparticle currents and (2) do not couple the right-chiral neutrino. These rotations comprise additional exterior transformations that commute with the Poincare group and form the group SU(2)_L, interior ones that constitute SU(3)_C, and a unique group of coupled double-sided rotations with U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and isotopic symmetries within the restrictions of the Coleman--Mandula theorem. The four extra spacelike dimensions in the model form a basis for the Higgs isodoublet field, whose symmetry requires the chirality of SU(2). The charge assignments of both the fundamental fermions and the Higgs boson are produced exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys. A: Math. Gen. 9 Mar 2001. Typos correcte

    A GEOMETRIC BASIS FOR THE STANDARD-MODEL GAUGE GROUP

    No full text
    corecore