27 research outputs found
Dark MaGICC: the effect of Dark Energy on galaxy formation. Cosmology does matter
We present the Dark MaGICC project, which aims to investigate the effect of
Dark Energy (DE) modeling on galaxy formation via hydrodynamical cosmological
simulations. Dark MaGICC includes four dynamical Dark Energy scenarios with
time varying equations of state, one with a self-interacting Ratra-Peebles
model. In each scenario we simulate three galaxies with high resolution using
smoothed particle hydrodynamics (SPH). The baryonic physics model is the same
used in the Making Galaxies in a Cosmological Context (MaGICC) project, and we
varied only the background cosmology. We find that the Dark Energy
parameterization has a surprisingly important impact on galaxy evolution and on
structural properties of galaxies at z=0, in striking contrast with predictions
from pure Nbody simulations. The different background evolutions can (depending
on the behavior of the DE equation of state) either enhance or quench star
formation with respect to a LCDM model, at a level similar to the variation of
the stellar feedback parameterization, with strong effects on the final galaxy
rotation curves. While overall stellar feedback is still the driving force in
shaping galaxies, we show that the effect of the Dark Energy parameterization
plays a larger role than previously thought, especially at lower redshifts. For
this reason, the influence of Dark Energy parametrization on galaxy formation
must be taken into account, especially in the era of precision cosmology.Comment: 11 pages, 13 figure
Systematic problems with using dark matter simulations to model stellar halos
The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be "painted" onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the "painting" simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude
NIHAO project II: Halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations
We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects)
cosmological simulations to study the effects of galaxy formation on key
properties of dark matter (DM) haloes. NIHAO consists of
high-resolution SPH simulations that include (metal-line) cooling, star
formation, and feedback from massive stars and SuperNovae, and cover a wide
stellar and halo mass range: ( ). When compared to DM-only simulations,
the NIHAO haloes have similar shapes at the virial radius, R_{\rm vir}, but are
substantially rounder inside . In NIHAO simulations
increases with halo mass and integrated star formation efficiency,
reaching at the Milky Way mass (compared to 0.5 in DM-only),
providing a plausible solution to the long-standing conflict between
observations and DM-only simulations. The radial profile of the phase-space
parameter () is best fit with a single power law in DM-only
simulations, but shows a flattening within for NIHAO
for total masses . Finally, the global velocity
distribution of DM is similar in both DM-only and NIHAO simulations, but in the
solar neighborhood, NIHAO galaxies deviate substantially from Maxwellian. The
distribution is more symmetric, roughly Gaussian, with a peak that shifts to
higher velocities for Milky Way mass haloes. We provide the distribution
parameters which can be used for predictions for direct DM detection
experiments. Our results underline the ability of the galaxy formation
processes to modify the properties of dark matter haloes.Comment: 19 pages, 17 figures, analysis strongly improved, main conclusions
unchanged, accepted for publication in MNRA
NIHAO IV: Core creation and destruction in dark matter density profiles across cosmic time
We use the NIHAO simulations to investigate the effects of baryonic physics
on the time evolution of Dark Matter central density profiles. The sample is
made of independent high resolution hydrodynamical simulations of
galaxy formation and covers a wide mass range: 1e10< Mhalo <1e12, i.e., from
dwarfs to L* . We confirm previous results on the dependence of the inner dark
matter density slope, , on the ratio between stellar-to-halo mass. We
show that this relation holds approximately at all redshifts (with an intrinsic
scatter of ~0.18 in ). This implies that in practically all haloes the
shape of their inner density profile changes quite substantially over cosmic
time, as they grow in stellar and total mass. Thus, depending on their final
stellar-to-halo mass ratio, haloes can either form and keep a substantial
density core (size~1 kpc), or form and then destroy the core and re-contract
the halo, going back to a cuspy profile, which is even steeper than CDM
predictions for massive galaxies (~1e12 Msun). We show that results from the
NIHAO suite are in good agreement with recent observational measurements of
in dwarf galaxies. Overall our results suggest that the notion of a
universal density profile for dark matter haloes is no longer valid in the
presence of galaxy formation.Comment: 11 pages, 13 figures. Corrected typo in table 2 (middle row) with
respect to the version published in MNRA
The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores
We use a suite of 31 simulated galaxies drawn from the MaGICC project to investigate the effects of baryonic feedback on the density profiles of dark matter haloes. The sample covers a wide mass range: 9.4×109 <Mhalo/M� <7.8×1011, hosting galaxies with stellarmasses in the range 5.0×105 <M∗/M� < 8.3×1010, i.e. from dwarf to L∗. The galaxies are simulated with blastwave supernova feedback and, for some of them, an additional source of energy from massive stars is included. Within this feedback scheme we vary several parameters, such as the initial mass function, the density threshold for star formation, and energy from supernovae and massive stars. The main result is a clear dependence of the inner slope of the dark matter density profile, α in ρ ∝ rα, on the stellar-to-halo mass ratio, M∗/Mhalo. This relation is independent of the particular choice of parameters within our stellar feedback scheme, allowing a prediction for cusp versus core formation. When M∗/Mhalo is low, �0.01 per cent, energy from stellar feedback is insufficient to significantly alter the inner dark matter density, and the galaxy retains a cuspy profile. At higher stellar-to-halo mass ratios, feedback drives the expansion of the dark matter and generates cored profiles. The flattest profiles form where M∗/Mhalo ∼ 0.5 per cent. Above this ratio, stars formed in the central regions deepen the gravitational potential enough to oppose the supernova-driven expansion process, resulting in cuspier profiles. Combining the dependence of α on M∗/Mhalo with the empirical abundance matching relation between M∗ and Mhalo provides a prediction for how α varies as a function of stellar mass. Further, using the Tully–Fisher relation allows a prediction for the dependence of the dark matter inner slope on the observed rotation velocity of galaxies. The most cored galaxies are expected to have Vrot ∼ 50 km s−1, with α decreasing for more massive disc galaxies: spirals with Vrot ∼ 150 km s−1 have central slopes α ≤−0.8, approaching again the Navarro–Frenk–White profile. This novel prediction for the dependence of α on disc galaxy mass can be tested using observational data sets and can be applied to theoretical modelling of mass profiles and populations of disc galaxies
A mass-dependent density profile for dark matter haloes including the influence of galaxy formation
We introduce a mass-dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the Making Galaxies In a Cosmological Context project, which have been shown to match a wide range of disc scaling relationships. We find that the best-fitting parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity M⋆/Mhalo constrains the inner (γ) and outer (β) slopes of dark matter density, and the sharpness of transition between the slopes (α), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The concentration of the haloes in the hydrodynamical simulations is consistent with N-body expectations up to Milky Way-mass galaxies, at which mass the haloes become twice as concentrated as compared with pure dark matter runs. This mass-dependent density profile can be directly applied to rotation curve data of observed galaxies and to semi-analytic galaxy formation models as a significant improvement over the commonly used NFW profile
Haloes gone MAD: The Halo-Finder Comparison Project
[abridged] We present a detailed comparison of fundamental dark matter halo
properties retrieved by a substantial number of different halo finders. These
codes span a wide range of techniques including friends-of-friends (FOF),
spherical-overdensity (SO) and phase-space based algorithms. We further
introduce a robust (and publicly available) suite of test scenarios that allows
halo finder developers to compare the performance of their codes against those
presented here. This set includes mock haloes containing various levels and
distributions of substructure at a range of resolutions as well as a
cosmological simulation of the large-scale structure of the universe. All the
halo finding codes tested could successfully recover the spatial location of
our mock haloes. They further returned lists of particles (potentially)
belonging to the object that led to coinciding values for the maximum of the
circular velocity profile and the radius where it is reached. All the finders
based in configuration space struggled to recover substructure that was located
close to the centre of the host halo and the radial dependence of the mass
recovered varies from finder to finder. Those finders based in phase space
could resolve central substructure although they found difficulties in
accurately recovering its properties. Via a resolution study we found that most
of the finders could not reliably recover substructure containing fewer than
30-40 particles. However, also here the phase space finders excelled by
resolving substructure down to 10-20 particles. By comparing the halo finders
using a high resolution cosmological volume we found that they agree remarkably
well on fundamental properties of astrophysical significance (e.g. mass,
position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables
accepted for publication in MNRAS. The high-resolution version of the paper
as well as all the test cases and analysis can be found at the web site
http://popia.ft.uam.es/HaloesGoingMA
VectorBase: a home for invertebrate vectors of human pathogens
VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever