124 research outputs found

    Pan-chromatic observations of the remarkable nova LMC 2012

    Full text link
    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13±\pm5 days after discovery and ended around day 50 after discovery. During the super soft phase, the \Swift/XRT and \Chandra\ spectra were consistent with the underlying white dwarf being very hot, \sim 1 MK, and luminous, \sim 1038^{38} erg s1^{-1}. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24±\pm0.03 hr period in all UV, optical, and near-IR bands with amplitudes of \sim 0.3 magnitudes which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, ii = 60±\pm10^{\arcdeg}, was inferred from the early optical emission lines. The {\it HST}/STIS UV spectra were highly unusual with only the \ion{N}{5} (1240\AA) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, \sim 106^{-6} M_{\odot}, from a hot and massive white dwarf near the Chandrasekhar limit. The white dwarf, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme white dwarf characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass.Comment: 18 figures, 6 tables (one online only containing all the photometry

    Influence of Corn Stover Harvest on Soil Quality Assessments at Multiple Locations Across the U.S.

    Get PDF
    Corn (Zea mays L.) stover has been identified as a biofuel feedstock due to its abundance and a perception that the residues are unused trash material. However, corn stover and other plant residues play a role in maintaining soil quality (health) and enhancing productivity, thus use of this abundant material as feedstock must be balanced with the need to protect the vital soil resource. Plant residues provide physical protection against erosion by wind and water, contribute to soil structure, nutrient cycling, and help sustain the soil microbiota. Replicated plots were established on productive soils at several locations (IA, IN, MN, NE, PA, SD, and SC) and a multi-year study was carried out to determine the amount of corn stover that can be removed while maintaining the current level of soil quality for each soil. These sites represented a range of soil types and climatic conditions, and have been ongoing for and least five years with some much longer studies. All sites had at least three levels of stover harvest: grain only (control), maximum removal (90-100%) and a mid-range removal rate (~50%). Data from 4 sites are presented (IA, IN, MN, and NE). The Soil Management Assessment Framework (SMAF) was used to score and assess changes in selected soil quality indicators. Data shows that removal at the highest rates resulted in some loss in soil quality with respect to soil organic carbon and bulk density. These sites were converted to no-till when the experiments were initiated, thus SOC accrual because of the shift in tillage management appeared to balance any losses due to feedstock harvest

    Corn Grain, Stover Yield and Nutrient Removal Validations at Regional Partnership Sites

    Get PDF
    Corn (Zea mays L.) stover has been identified as a major feedstock for cellulosic bioenergy. This report summarizes grain and stover yield as well as N, P, and K removal at several Sun Grant Regional Partnership (SGRP) sites. National Agricultural Statistical Service (NASS) grain yields were used to assess the relevancy of plot-scale yields with county averages. Seasonal variation in weather patterns caused yields to differ substantially among sites and years. Nutrient removal estimates were significantly influenced by the sampling method (i.e. analysis of hand samples between physiologic maturity and grain harvest versus stover collected during the harvest operation). Based on ancillary studies that indicate corn stover should not be harvested if average grain yields are less than 175 bu ac-1 (11 Mg ha-1 ), these studies show that non-irrigated SGRP sites with the highest potential for sustainable corn stover harvest were located between -91º and -93º west longitude. The more eastern (-78º w longitude) and western (-96º w longitude) sites did not have sufficient yield for sustainable routine stover harvest, although with good management, corn could still be part of an overall landscape approach for sustainable feedstock production in those areas. For producers with consistently high yields (i.e. \u3e 200 bu ac-1 ) and where residue management may actually be a major problem (e.g. in irrigated areas), moderate stover harvest may actually decrease fuel use and save additional energy by reducing the amount of tillage needed to prepare subsequent seedbeds. Less intensive tillage could also preserve rhizosphere carbon and/or soil structure benefits often attributed to no-till systems

    Preventing species extinctions: A global conservation consortium for Erica

    Get PDF
    Societal Impact Statement Human-caused habitat destruction and transformation is resulting in a cascade of impacts to biological diversity, of which arguably the most fundamental is species extinctions. The Global Conservation Consortia (GCC) are a means to pool efforts and expertise across national boundaries and between disciplines in the attempt to prevent such losses in focal plant groups. GCC Erica coordinates an international response to extinction threats in one such group, the heaths, or heathers, of which hundreds of species are found only in South Africa's spectacularly diverse Cape Floristic Region. Summary Effectively combating the biodiversity crisis requires coordinated conservation efforts. Botanic Gardens Conservation International (BGCI) and numerous partners have established Global Conservation Consortia (GCC) to collaboratively develop and implement comprehensive conservation strategies for priority threatened plant groups. Through these networks, institutions with specialised collections and staff can leverage ongoing work to optimise impact for threatened plant species. The genus Erica poses a challenge similar in scale to that of the largest other GCC group, Rhododendron, but almost 700 of the around 800 known species of Erica are concentrated in a single biodiversity hotspot, the Cape Floristic Region (CFR) of South Africa. Many species are known to be threatened, suffering the immediate impacts of habitat destruction, invasive species, changes in natural fire regimes and climate change. Efforts to counter these threats face general challenges: disproportionate burden of in situ conservation falling on a minority of the community, limited knowledge of species-rich groups, shortfalls in assessing and monitoring threat, lack of resources for in situ and limitations of knowledge for ex situ conservation efforts and in communicating the value of biological diversity to a public who may never encounter it in the wild. GCC Erica brings together the world's Erica experts, conservationists and the botanical community, including botanic gardens, seed banks and organisations in Africa, Madagascar, Europe, the United States, Australia and beyond. We are collaboratively pooling our unique sets of skills and resources to address these challenges in working groups for conservation prioritisation, conservation in situ, horticulture, seed banking, systematic research and outreach.publishedVersio

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Swift X-Ray Observations of Classical Novae. II. The Super Soft Source sample

    Full text link
    The Swift GRB satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the XRT (0.3-10 keV) X-ray instrument count rates and the UVOT (1700-8000 Angstroms) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with super soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than 3 years after the outburst begins. Previous relationships, such as the nuclear burning duration vs. t_2 or the expansion velocity of the eject and nuclear burning duration vs. the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.Comment: Accepted to ApJ Supplements. Full data for Table 2 and Figure 17 available in the electronic edition. New version of the previously posted paper since the earlier version was all set in landscape mod

    Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment

    Get PDF
    Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used to evaluate cAMP stimulation. The antibodies bind diverse epitopes associated with low nanomolar agonist activity at β1AR, and they appeared to show some degree of biased signaling as they were inactive in an assay measuring signaling through β-arrestin. In vitro characterization also verified different antibody-receptor interactions reflecting the different epitopes on the extracellular surface of β1AR to which the mAbs bind. The anti-β1AR mAbs only demonstrated agonist activity when in dimeric antibody format, but not as the monomeric Fab format, suggesting that agonist activation may be mediated through promoting receptor dimerization. Finally, we have also shown that at least one of these antibodies exhibits in vivo functional activity at a therapeutically-relevant dose producing an increase in heart rate consistent with β1AR agonism
    corecore