303 research outputs found
Fine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization
When approaching a novel visual recognition problem in a specialized image
domain, a common strategy is to start with a pre-trained deep neural network
and fine-tune it to the specialized domain. If the target domain covers a
smaller visual space than the source domain used for pre-training (e.g.
ImageNet), the fine-tuned network is likely to be over-parameterized. However,
applying network pruning as a post-processing step to reduce the memory
requirements has drawbacks: fine-tuning and pruning are performed
independently; pruning parameters are set once and cannot adapt over time; and
the highly parameterized nature of state-of-the-art pruning methods make it
prohibitive to manually search the pruning parameter space for deep networks,
leading to coarse approximations. We propose a principled method for jointly
fine-tuning and compressing a pre-trained convolutional network that overcomes
these limitations. Experiments on two specialized image domains (remote sensing
images and describable textures) demonstrate the validity of the proposed
approach.Comment: BMVC 2017 ora
Generic Tubelet Proposals for Action Localization
We develop a novel framework for action localization in videos. We propose
the Tube Proposal Network (TPN), which can generate generic, class-independent,
video-level tubelet proposals in videos. The generated tubelet proposals can be
utilized in various video analysis tasks, including recognizing and localizing
actions in videos. In particular, we integrate these generic tubelet proposals
into a unified temporal deep network for action classification. Compared with
other methods, our generic tubelet proposal method is accurate, general, and is
fully differentiable under a smoothL1 loss function. We demonstrate the
performance of our algorithm on the standard UCF-Sports, J-HMDB21, and UCF-101
datasets. Our class-independent TPN outperforms other tubelet generation
methods, and our unified temporal deep network achieves state-of-the-art
localization results on all three datasets
- …