37 research outputs found
Neural Expectation Maximization
Many real world tasks such as reasoning and physical interaction require
identification and manipulation of conceptual entities. A first step towards
solving these tasks is the automated discovery of distributed symbol-like
representations. In this paper, we explicitly formalize this problem as
inference in a spatial mixture model where each component is parametrized by a
neural network. Based on the Expectation Maximization framework we then derive
a differentiable clustering method that simultaneously learns how to group and
represent individual entities. We evaluate our method on the (sequential)
perceptual grouping task and find that it is able to accurately recover the
constituent objects. We demonstrate that the learned representations are useful
for next-step prediction.Comment: Accepted to NIPS 201
Using Machine Learning for Handover Optimization in Vehicular Fog Computing
Smart mobility management would be an important prerequisite for future fog
computing systems. In this research, we propose a learning-based handover
optimization for the Internet of Vehicles that would assist the smooth
transition of device connections and offloaded tasks between fog nodes. To
accomplish this, we make use of machine learning algorithms to learn from
vehicle interactions with fog nodes. Our approach uses a three-layer
feed-forward neural network to predict the correct fog node at a given location
and time with 99.2 % accuracy on a test set. We also implement a dual stacked
recurrent neural network (RNN) with long short-term memory (LSTM) cells capable
of learning the latency, or cost, associated with these service requests. We
create a simulation in JAMScript using a dataset of real-world vehicle
movements to create a dataset to train these networks. We further propose the
use of this predictive system in a smarter request routing mechanism to
minimize the service interruption during handovers between fog nodes and to
anticipate areas of low coverage through a series of experiments and test the
models' performance on a test set