63 research outputs found
Experimenting with Transitive Verbs in a DisCoCat
Formal and distributional semantic models offer complementary benefits in
modeling meaning. The categorical compositional distributional (DisCoCat) model
of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of
both to provide a general framework in which meanings of words, obtained
distributionally, are composed using methods from the logical setting to form
sentence meaning. Concrete consequences of this general abstract setting and
applications to empirical data are under active study (Grefenstette et al.,
arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In
this paper, we extend this study by examining transitive verbs, represented as
matrices in a DisCoCat. We discuss three ways of constructing such matrices,
and evaluate each method in a disambiguation task developed by Grefenstette and
Sadrzadeh (arXiv:1106.4058v1 [cs.CL]).Comment: 5 pages, to be presented at GEMS 2011, as part of EMNLP'11 workshop
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional
methods has been a challenge for computational linguists. We implement the
abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using
data from the BNC and evaluate it. The implementation is based on unsupervised
learning of matrices for relational words and applying them to the vectors of
their arguments. The evaluation is based on the word disambiguation task
developed by Mitchell and Lapata (2008) for intransitive sentences, and on a
similar new experiment designed for transitive sentences. Our model matches the
results of its competitors in the first experiment, and betters them in the
second. The general improvement in results with increase in syntactic
complexity showcases the compositional power of our model.Comment: 11 pages, to be presented at EMNLP 2011, to be published in
Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processin
Category-Theoretic Quantitative Compositional Distributional Models of Natural Language Semantics
This thesis is about the problem of compositionality in distributional
semantics. Distributional semantics presupposes that the meanings of words are
a function of their occurrences in textual contexts. It models words as
distributions over these contexts and represents them as vectors in high
dimensional spaces. The problem of compositionality for such models concerns
itself with how to produce representations for larger units of text by
composing the representations of smaller units of text.
This thesis focuses on a particular approach to this compositionality
problem, namely using the categorical framework developed by Coecke, Sadrzadeh,
and Clark, which combines syntactic analysis formalisms with distributional
semantic representations of meaning to produce syntactically motivated
composition operations. This thesis shows how this approach can be
theoretically extended and practically implemented to produce concrete
compositional distributional models of natural language semantics. It
furthermore demonstrates that such models can perform on par with, or better
than, other competing approaches in the field of natural language processing.
There are three principal contributions to computational linguistics in this
thesis. The first is to extend the DisCoCat framework on the syntactic front
and semantic front, incorporating a number of syntactic analysis formalisms and
providing learning procedures allowing for the generation of concrete
compositional distributional models. The second contribution is to evaluate the
models developed from the procedures presented here, showing that they
outperform other compositional distributional models present in the literature.
The third contribution is to show how using category theory to solve linguistic
problems forms a sound basis for research, illustrated by examples of work on
this topic, that also suggest directions for future research.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201
Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus
The Distributional Compositional Categorical (DisCoCat) model is a
mathematical framework that provides compositional semantics for meanings of
natural language sentences. It consists of a computational procedure for
constructing meanings of sentences, given their grammatical structure in terms
of compositional type-logic, and given the empirically derived meanings of
their words. For the particular case that the meaning of words is modelled
within a distributional vector space model, its experimental predictions,
derived from real large scale data, have outperformed other empirically
validated methods that could build vectors for a full sentence. This success
can be attributed to a conceptually motivated mathematical underpinning, by
integrating qualitative compositional type-logic and quantitative modelling of
meaning within a category-theoretic mathematical framework.
The type-logic used in the DisCoCat model is Lambek's pregroup grammar.
Pregroup types form a posetal compact closed category, which can be passed, in
a functorial manner, on to the compact closed structure of vector spaces,
linear maps and tensor product. The diagrammatic versions of the equational
reasoning in compact closed categories can be interpreted as the flow of word
meanings within sentences. Pregroups simplify Lambek's previous type-logic, the
Lambek calculus, which has been extensively used to formalise and reason about
various linguistic phenomena. The apparent reliance of the DisCoCat on
pregroups has been seen as a shortcoming. This paper addresses this concern, by
pointing out that one may as well realise a functorial passage from the
original type-logic of Lambek, a monoidal bi-closed category, to vector spaces,
or to any other model of meaning organised within a monoidal bi-closed
category. The corresponding string diagram calculus, due to Baez and Stay, now
depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi
A Convolutional Neural Network for Modelling Sentences
The ability to accurately represent sentences is central to language
understanding. We describe a convolutional architecture dubbed the Dynamic
Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of
sentences. The network uses Dynamic k-Max Pooling, a global pooling operation
over linear sequences. The network handles input sentences of varying length
and induces a feature graph over the sentence that is capable of explicitly
capturing short and long-range relations. The network does not rely on a parse
tree and is easily applicable to any language. We test the DCNN in four
experiments: small scale binary and multi-class sentiment prediction, six-way
question classification and Twitter sentiment prediction by distant
supervision. The network achieves excellent performance in the first three
tasks and a greater than 25% error reduction in the last task with respect to
the strongest baseline
"Not not bad" is not "bad": A distributional account of negation
With the increasing empirical success of distributional models of
compositional semantics, it is timely to consider the types of textual logic
that such models are capable of capturing. In this paper, we address
shortcomings in the ability of current models to capture logical operations
such as negation. As a solution we propose a tripartite formulation for a
continuous vector space representation of semantics and subsequently use this
representation to develop a formal compositional notion of negation within such
models.Comment: 9 pages, to appear in Proceedings of the 2013 Workshop on Continuous
Vector Space Models and their Compositionalit
A Deep Architecture for Semantic Parsing
Many successful approaches to semantic parsing build on top of the syntactic
analysis of text, and make use of distributional representations or statistical
models to match parses to ontology-specific queries. This paper presents a
novel deep learning architecture which provides a semantic parsing system
through the union of two neural models of language semantics. It allows for the
generation of ontology-specific queries from natural language statements and
questions without the need for parsing, which makes it especially suitable to
grammatically malformed or syntactically atypical text, such as tweets, as well
as permitting the development of semantic parsers for resource-poor languages.Comment: In Proceedings of the Semantic Parsing Workshop at ACL 2014
(forthcoming
- …