7 research outputs found

    Asymptotics of Bivariate Generating Functions with Algebraic Singularities

    Get PDF
    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function

    Sublinear variance in Euclidean first-passage percolation

    Full text link
    The Euclidean first-passage percolation model of Howard and Newman is a rotationally invariant percolation model built on a Poisson point process. It is known that the passage time between 0 and ne1ne_1 obeys a diffusive upper bound: \mbox{Var}\, T(0,ne_1) \leq Cn, and in this paper we improve this inequality to Cn/lognCn/\log n. The methods follow the strategy used for sublinear variance proofs on the lattice, using the Falik-Samorodnitsky inequality and a Bernoulli encoding, but with substantial technical difficulties. To deal with the different setup of the Euclidean model, we represent the passage time as a function of Bernoulli sequences and uniform sequences, and develop several "greedy lattice animal" arguments.Comment: 40 pages, 1 figur

    Asymptotics of Bivariate Analytic Functions with Algebraic Singularities

    No full text
    In this paper, we use the multivariate analytic techniques of Pemantle and Wilson to find asymptotic for- mulae for the coefficients of a broad class of multivariate generating functions with algebraic singularities. Flajolet and Odlyzko (1990) analyzed the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by immediately reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new multivariate analytic techniques and used them to analyze the coefficients of rational generating functions
    corecore