28,517 research outputs found
An analytical study of electric vehicle handling dynamics
Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated
ADP correspondence system: Unsolicited proposal evaluation tracking application
A complete description of a correspondence control system, designed to be used by non-ADP clerical personnel is provided. In addition to operating instructions, sufficient design and conceptual information is provided to allow use or adaption of the system in related applications. The complete COBOL program and documentation are available
Smooth Approximation of Lipschitz functions on Riemannian manifolds
We show that for every Lipschitz function defined on a separable
Riemannian manifold (possibly of infinite dimension), for every continuous
, and for every positive number , there exists
a smooth Lipschitz function such that
for every and
. Consequently, every separable
Riemannian manifold is uniformly bumpable. We also present some applications of
this result, such as a general version for separable Riemannian manifolds of
Deville-Godefroy-Zizler's smooth variational principle.Comment: 10 page
On the Theory of Fermionic Preheating
In inflationary cosmology, the particles constituting the Universe are
created after inflation due to their interaction with moving inflaton field(s)
in the process of preheating. In the fermionic sector, the leading channel is
out-of equilibrium particle production in the non-perturbative regime of
parametric excitation, which respects Pauli blocking but differs significantly
from the perturbative expectation. We develop theory of fermionic preheating
coupling to the inflaton, without and with expansion of the universe, for light
and massive fermions, to calculate analytically the occupation number of
created fermions, focusing on their spectra and time evolution. In the case of
large resonant parameter we extend for rermions the method of successive
parabolic scattering, earlier developed for bosonic preheating. In an expanding
universe parametric excitation of fermions is stochastic. Created fermions very
quickly, within tens of inflaton oscillations, fill up a sphere of radius
in monetum space. We extend our formalism to the production of
superheavy fermions and to `instant' fermion creation.Comment: 14 pages, latex, 12 figures, submitted for publicatio
A character sum evaluation and Gaussian hypergeometric series
AbstractEvans has conjectured the value of a certain character sum. The conjecture is confirmed using properties of Gaussian hypergeometric series which are well known for hypergeometric series. Several related questions are discussed
- …