1,672 research outputs found

    CD4 Cell Count Threshold for Cryptococcal Antigen Screening of HIV-Infected Individuals: A Systematic Review and Meta-analysis.

    Get PDF
    Background: Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. Methods: We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Results: Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%-7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%-2.7%; 21 studies) among patients with CD4 count 101-200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%-22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101-200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%-15.5%]) compared with outpatients (6.3% [95% CI, 5.3%-7.4%]). Conclusions: The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL

    The Radial Velocity Distribution of Class I and Flat-Spectrum Protostars

    Full text link
    We analyze radial velocities for a sample of 31 Class I and flat spectrum protostars in Taurus-Auriga, rho Ophiuchi and Serpens for evidence of the global dynamical state of extremely young stellar populations buried within parental molecular clouds. Comparing the radial velocity of each protostar to that of the local CO gas, we are able to constrain the one dimensional radial velocity dispersion of Class I and flat spectrum objects to ~ 2.5 km/sec or below. This upper limit to the protostellar velocity dispersion is consistent with the velocity dispersions of surrounding CO gas which we measure to be ~ 1.4 km/sec, suggesting that the motions of protostars and local CO gas are dynamically linked and dominated by the gravitational potential of the molecular cloud. However, the upper limit on the protostellar velocity dispersion could still allow for slightly inflated motions of protostars relative to the local molecular gas. Four of the protostars analyzed appear to have velocities more than 3 sigma (7.5 km/sec) away from the central local CO gas velocity while showing spectroscopic indicators of youth and accretion such as H_2 emission, HI Br Gamma emission, or K band continuum veiling. These radial velocity outliers may represent protostellar spectroscopic binaries or ejected cluster members.Comment: 9 pages in emulate ApJ format, accepted for publication in A

    Intermediate-mass black holes and the fundamental plane of black hole accretion

    Full text link
    We present new 5 GHz VLA observations of a sample of 8 active intermediate-mass black holes with masses 104.9<M<106.1 M⊙10^{4.9} < M < 10^{6.1}\ M_{\odot} found in galaxies with stellar masses M∗<3×109 M⊙M_{*} < 3 \times 10^{9}\ M_{\odot}. We detected 5 of the 8 sources at high significance. Of the detections, 4 were consistent with a point source, and one (SDSS J095418.15+471725.1, with black hole mass M<105 M⊙M < 10^{5}\ M_{\odot}) clearly shows extended emission that has a jet morphology. Combining our new radio data with the black hole masses and literature X-ray measurements, we put the sources on the fundamental plane of black hole accretion. We find that the extent to which the sources agree with the fundamental plane depends on their star-forming/composite/AGN classification based on optical narrow emission line ratios. he single star-forming source is inconsistent with the fundamental plane. The three composite sources are consistent, and three of the four AGN sources are inconsistent with the fundamental plane. We argue that this inconsistency is genuine and not a result of misattributing star-formation to black hole activity. Instead, we identify the sources in our sample that have AGN-like optical emission line ratios as not following the fundamental plane and thus caution the use of the fundamental plane to estimate masses without additional constraints, such as radio spectral index, radiative efficiency, or the Eddington fraction.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 9 pages, 2 figures. Images can be accessed in fits format from https://doi.org/10.7302/3100-6e6
    • …
    corecore