12 research outputs found
Homeownership in public housing--residents' views
Thesis (M.C.P.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1993.Includes bibliographical references (leaves 116-121).by Sharon L. Greenberger.M.C.P
Measuring dementia carers' unmet need for services - an exploratory mixed method study
<p>Abstract</p> <p>Background</p> <p>To ensure carers of people with dementia receive support, community services increasingly use measures of caregiver (carer) burden to assess for unmet need. This study used Bradshaw's taxonomy of need to explore the link between measures of carer burden (normative need), service use (expressed need), and carer's stated need (felt need).</p> <p>Methods</p> <p>This mixed method exploratory study compared measures of carer burden with community services received and unmet needs, for 20 community-dwelling carer/care-recipient pairs.</p> <p>Results</p> <p>A simple one-item measure of carers' felt need for more services was significantly related to carer stress as measured on the GHQ-30. Qualitative data showed that there are many potential stressors for carers, other than those related to the care-giving role. We found a statistically significant rank correlation (p = 0.01) between carer's use of in-home respite and the care-recipient's cognitive and functional status which is likely to have been related to increased requirement for carer vigilance, effort and the isolation of spouse carers. Otherwise, there were no statistically significant relationships between carer burden or stress and level of service provision.</p> <p>Conclusion</p> <p>When carers are stressed or depressed, they can recognise that they would like more help from services, even if measures of carer burden and care recipient status do not clearly indicate unmet service needs. A question designed to elicit carer' <it>felt </it>need may be a better indicator of service need, and a red flag for recognising growing stress in carers of people with dementia. Assessment of service needs should recognise the fallibility of carer burden measures, given that carer stress may not only come from caring for someone with dementia, but can be significantly compounded by other life situations.</p
SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational study.
BACKGROUND: The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood.
METHODS: We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations(≥2403 U/mL) in logistic regression models.
FINDINGS: Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent.
INTERPRETATION: These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms.
FUNDING: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health
SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational studyResearch in context
Summary: Background: The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods: We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4–12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings: Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4–12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation: These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health
SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T cell therapy: A prospective, multicenter, observational study.
BACKGROUND: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiatedtherapy.
METHODS: We conducted a multicenter prospective observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup.
RESULTS: We enrolled 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), and chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy immunity.
CONCLUSIONS: These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation three to four months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T cell therapy