12,028 research outputs found
On a conjecture of Bennewitz, and the behaviour of the Titchmarsh-Weyl matrix near a pole
For any real limit- th-order selfadjoint linear differential
expression on , Titchmarsh- Weyl matrices
can be defined. Two matrices of particu lar interest are the
matrices and assoc iated respectively with
Dirichlet and Neumann boundary conditions at . These satisfy
. It is known that when these matrices
have poles (which can only lie on the real axis) the existence of valid HELP
inequalities depends on their behaviour in the neighbourhood of these poles. We
prove a conjecture of Bennewitz and use it, together with a new algorithm for
computing the Laurent expansion of a Titchmarsh-Weyl matrix in the
neighbourhood of a pole, to investigate the existence of HELP inequalities for
a number of differential equations which have so far proved awkward to analys
\u3cem\u3eArabidopsis\u3c/em\u3e AZI1 Family Proteins Mediate Signal Mobilization for Systemic Defence Priming
Priming is a major mechanism behind the immunological \u27memory\u27 observed during two key plant systemic defences: systemic acquired resistance (SAR) and induced systemic resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envelopes and membrane contact sites between them. Furthermore, these LTP-like proteins form complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1 paralogs occurs through a mechanism that may enable/facilitate their roles in signal mobilization
Mechanistic studies on DNA damage by minor groove binding copper–phenanthroline conjugates
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes
Quantum behaviour of a flux qubit coupled to a resonator
We present a detailed theoretical analysis for a system of a superconducting
flux qubit coupled to a transmission line resonator. The master equation,
accounting incoherent processes for a weakly populated resonator, is
analytically solved. An electromagnetic wave transmission coefficient through
the system, which provides a tool for probing dressed states of the qubit, is
derived. We also consider a general case for the resonator with more than one
photon population and compare the results with an experiment on the
qubit-resonator system in the intermediate coupling regime, when the coupling
energy is comparable with the qubit relaxation rate.Comment: 16 pages, 6 figure
CPT Violation Implies Violation of Lorentz Invariance
An interacting theory that violates CPT invariance necessarily violates
Lorentz invariance. On the other hand, CPT invariance is not sufficient for
out-of-cone Lorentz invariance. Theories that violate CPT by having different
particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio
An empirical study of the “prototype walkthrough”: a studio-based activity for HCI education
For over a century, studio-based instruction has served as an effective pedagogical model in architecture and fine arts education. Because of its design orientation, human-computer interaction (HCI) education is an excellent venue for studio-based instruction. In an HCI course, we have been exploring a studio-based learning activity called the prototype walkthrough, in which a student project team simulates its evolving user interface prototype while a student audience member acts as a test user. The audience is encouraged to ask questions and provide feedback. We have observed that prototype walkthroughs create excellent conditions for learning about user interface design. In order to better understand the educational value of the activity, we performed a content analysis of a video corpus of 16 prototype walkthroughs held in two HCI courses. We found that the prototype walkthrough discussions were dominated by relevant design issues. Moreover, mirroring the justification behavior of the expert instructor, students justified over 80 percent of their design statements and critiques, with nearly one-quarter of those justifications having a theoretical or empirical basis. Our findings suggest that PWs provide valuable opportunities for students to actively learn HCI design by participating in authentic practice, and provide insight into how such opportunities can be best promoted
Search for exchange-antisymmetric two-photon states
Atomic two-photon J=0 J'=1 transitions are forbidden for
photons of the same energy. This selection rule is related to the fact that
photons obey Bose-Einstein statistics. We have searched for small violations of
this selection rule by studying transitions in atomic Ba. We set a limit on the
probability that photons are in exchange-antisymmetric states:
.Comment: 5 pages, 4 figures, ReVTeX and .eps. Submitted to Phys. Rev. Lett.
Revised version 9/25/9
Non-Pauli Effects from Noncommutative Spacetimes
Noncommutative spacetimes lead to nonlocal quantum field theories (qft's)
where spin-statistics theorems cannot be proved. For this reason, and also
backed by detailed arguments, it has been suggested that they get corrected on
such spacetimes leading to small violations of the Pauli principle. In a recent
paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity
were calculated and confronted with experiments. Here we give details of the
computation missing from this paper. The latter was based on a spacetime
different from the Moyal plane. We argue that it
quantizes time in units of . Energy is then conserved only mod
. Issues related to superselection rules raised by non-Pauli
effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of
arXiv:1003.2250. This version is close to the one accepted by JHE
- …