14,691 research outputs found

    Variational Principle in the Algebra of Asymptotic Fields

    Full text link
    This paper proposes a variational principle for the solutions of quantum field theories in which the ``trial functions'' are chosen from the algebra of asymptotic fields, and illustrates this variational principle in simple cases.Comment: 15 pages, Latex, no figure

    Why is CPT fundamental?

    Full text link
    G. L\"uders and W. Pauli proved the CPT\mathcal{CPT} theorem based on Lagrangian quantum field theory almost half a century ago. R. Jost gave a more general proof based on ``axiomatic'' field theory nearly as long ago. The axiomatic point of view has two advantages over the Lagrangian one. First, the axiomatic point of view makes clear why CPT\mathcal{CPT} is fundamental--because it is intimately related to Lorentz invariance. Secondly, the axiomatic proof gives a simple way to calculate the CPT\mathcal{CPT} transform of any relativistic field without calculating C\mathcal{C}, P\mathcal{P} and T\mathcal{T} separately and then multiplying them. The purpose of this pedagogical paper is to ``deaxiomatize'' the CPT\mathcal{CPT} theorem by explaining it in a few simple steps. We use theorems of distribution theory and of several complex variables without proof to make the exposition elementary.Comment: 17 pages, no figure

    Anyons as quon particles

    Full text link
    The momentum operator representation of nonrelativistic anyons is developed in the Chern - Simons formulation of fractional statistics. The connection between anyons and the q-deformed bosonic algebra is established.Comment: 10 pages,Late

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Non-Pauli Effects from Noncommutative Spacetimes

    Full text link
    Noncommutative spacetimes lead to nonlocal quantum field theories (qft's) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime Bχn⃗\mathcal{B}_{\chi\vec{n}} different from the Moyal plane. We argue that it quantizes time in units of χ\chi. Energy is then conserved only mod 2πχ\frac{2\pi}{\chi}. Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of arXiv:1003.2250. This version is close to the one accepted by JHE
    • …
    corecore