21 research outputs found

    Quantifying Environmental Limiting Factors on Tree Cover Using Geospatial Data

    Get PDF
    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover \u3c 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range

    Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits

    Get PDF
    Species distribution model (SDM) projections under future climate scenarios are increasingly being used to inform resource management and conservation strategies. A critical assumption for projecting climate change responses is that SDMs are transferable through time, an assumption that is largely untested because investigators often lack temporally independent data for assessing transferability. Further, understanding how the ecology of species influences temporal transferability is critical yet almost wholly lacking. This raises two questions. (1) Are SDM projections transferable in time? (2) Does temporal transferability relate to species ecological traits? To address these questions we developed SDMs for 133 vascular plant species using data from the mountain ranges of California (USA) from two time periods: the 1930s and the present day. We forecast historical models over 75 years of measured climate change and assessed their projections against current distributions. Similarly, we hindcast contemporary models and compared their projections to historical data. We quantified transferability and related it to species ecological traits including physiognomy, endemism, dispersal capacity, fire adaptation, and commonness. We found that non-endemic species with greater dispersal capacity, intermediate levels of prevalence, and little fire adaptation had higher transferability than endemic species with limited dispersal capacity that rely on fire for reproduction. We demonstrate that variability in model performance was driven principally by differences among species as compared to model algorithms or time period of model calibration. Further, our results suggest that the traits correlated with prediction accuracy in a single time period may not be related to transferability between time periods. Our findings provide a priori guidance for the suitability of SDM as an approach for forecasting climate change responses for certain taxa
    corecore