8 research outputs found

    ARL2 and BART Enter Mitochondria and Bind the Adenine Nucleotide Transporter

    No full text
    The ADP-ribosylation factor-like 2 (ARL2) GTPase and its binding partner binder of ARL2 (BART) are ubiquitously expressed in rodent and human tissues and are most abundant in brain. Both ARL2 and BART are predominantly cytosolic, but a pool of each was found associated with mitochondria in a protease-resistant form. ARL2 was found to lack covalent N-myristoylation, present on all other members of the ARF family, thereby preserving the N-terminal amphipathic α-helix as a potential mitochondrial import sequence. An overlay assay was developed to identify binding partners for the BART·ARL2·GTP complex and revealed a specific interaction with a protein in bovine brain mitochondria. Purification and partial microsequencing identified the protein as an adenine nucleotide transporter (ANT). The overlay assay was performed on mitochondria isolated from five different tissues from either wild-type or transgenic mice deleted for ANT1. Results confirmed that ANT1 is the predominant binding partner for the BART·ARL2·GTP complex and that the structurally homologous ANT2 protein does not bind the complex. Cardiac and skeletal muscle mitochondria from ant1(−)/ant1(−) mice had increased levels of ARL2, relative to that seen in mitochondria from wild-type animals. We conclude that the amount of ARL2 in mitochondria is subject to regulation via an ANT1-sensitive pathway in muscle tissues

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    Get PDF
    OBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS - Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10-8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/ C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 3 10-4), improved b-cell function (P = 1.1 × 10-5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10-6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS - We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore