26,987 research outputs found
A structural Markov property for decomposable graph laws that allows control of clique intersections
We present a new kind of structural Markov property for probabilistic laws on
decomposable graphs, which allows the explicit control of interactions between
cliques, so is capable of encoding some interesting structure. We prove the
equivalence of this property to an exponential family assumption, and discuss
identifiability, modelling, inferential and computational implications.Comment: 10 pages, 3 figures; updated from V1 following journal review, new
more explicit title and added section on inferenc
Sampling decomposable graphs using a Markov chain on junction trees
Full Bayesian computational inference for model determination in undirected
graphical models is currently restricted to decomposable graphs, except for
problems of very small scale. In this paper we develop new, more efficient
methodology for such inference, by making two contributions to the
computational geometry of decomposable graphs. The first of these provides
sufficient conditions under which it is possible to completely connect two
disconnected complete subsets of vertices, or perform the reverse procedure,
yet maintain decomposability of the graph. The second is a new Markov chain
Monte Carlo sampler for arbitrary positive distributions on decomposable
graphs, taking a junction tree representing the graph as its state variable.
The resulting methodology is illustrated with numerical experiments on three
specific models.Comment: 22 pages, 7 figures, 1 table. V2 as V1 except that Fig 1 was
corrected. V3 has significant edits, dropping some figures and including
additional examples and a discussion of the non-decomposable case. V4 is
further edited following review, and includes additional reference
Helping Communities Build: A review of the Community Land Trust Funds and lessons for future support
Numerical determination of the effective moments of non-spherical particles
Dielectric characterisation of polarisable particles, and prediction of the forces and torques exerted upon them, relies on the knowledge of the effective, induced dipole moment. In turn, through the mechanism of depolarisation, the induced dipole moment of a particle is strongly dependent upon its shape. Since realistic shapes create modelling difficulties, the âspherical particleâ approximation is often invoked. However, in many cases, including biological dielectric spectroscopy and dielectrophoresis, this assumption is a poor one. For example, human erythrocytes are essentially oblate spheroids with indented sides, while viruses and bacteria often have elongated cigar shapes. Since shape-dependent polarisation both strongly influences the accuracy of conventional dielectric characterisation methods using Maxwellâs mixture formula and confounds accurate prediction of dielectrophoretic forces and torques, it is important to develop means to treat non-spherical particles. In this paper, we demonstrate a means to extract the dipole moment directly from numerical solutions of the induced electrostatic potential when a particle is placed in a uniform electric field. The accuracy of the method is demonstrated for a range of particle shapes: spherical, ellipsoidal, truncated cylinders and an approximation of an erythrocyte, the red blood cell
Alternative sets of hyperspherical harmonics: Satisfying cusp conditions through frame transformations
By extending the concept of Euler-angle rotations to more than three
dimensions, we develop the systematics under rotations in higher-dimensional
space for a novel set of hyperspherical harmonics. Applying this formalism, we
determine all pairwise Coulomb interactions in a few-body system without
recourse to multipole expansions. Our approach combines the advantages of
relative coordinates with those of the hyperspherical description. In the
present method, each Coulomb matrix element reduces to the ``1/r'' form
familiar from the two-body problem. Consequently, our calculation accounts for
all the cusps in the wave function whenever an interparticle separation
vanishes. Unlike a truncated multipole expansion, the calculation presented
here is exact. Following the systematic development of the procedure for an
arbitrary number of particles, we demonstrate it explicitly with the simplest
nontrivial example, the three-body system.Comment: 19 pages, no figure
Piloted simulation of a ground-based time-control concept for air traffic control
A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement
The Eroding Artificial/Natural Distinction: Some Consequences for Ecology and Economics
Since Thomas Kuhnâs The Structure of Scientific Revolutions (1962), historians and philosophers of science have paid increasing attention to the implications of disciplinarity. In this chapter we consider restrictions posed to interdisciplinary exchange between ecology and economics that result from a particular kind of commitment to the ideal of disciplinary purity, that is, that each discipline is defined by an appropriate, unique set of objects, methods, theories, and aims. We argue that, when it comes to the objects of study in ecology and economics, ideas of disciplinary purity have been underwritten by the artificial-natural distinction. We then problematize this distinction, and thus disciplinary purity, both conceptually and empirically. Conceptually, the distinction is no longer tenable. Empirically, recent interdisciplinary research has shown the epistemological and policy-oriented benefits of dealing with models which explicitly link anthropogenic (i.e., âartificialâ) and non-anthropogenic factors (i.e., ânaturalâ). We conclude that, in the current age of the Anthropocene, it is to be expected that without interdisciplinary exchange, ecology and economics may relinquish global relevance because the distinct and separate systems to which each âpureâ science was originally made to apply will only diminish over time
- âŠ