2,335 research outputs found

    Distribution and Density of Vegetative Hydrilla Propagules in the Sediments of Two New Zealand Lakes

    Get PDF
    The distribution and density of hydrilla (Hydrilla verticillata (L.f.)Royle) turions and tubers in two New Zealand lakes were assessed by sampling cores of sediment from Lakes Tutira and Waikapiro each year from 1994 to 1997. Turion and tuber density differed with water depth, with maximum numbers of tubers and turions found in the 1-2 m and 1.5-4m water depth ranges respectively. A high turion to tuber ratio was observed, with turions accounting for over 80% of propagules. The relatively low numbers of turions and tubers compared with other reports, and the distribution of most tubers within the shallow water is likely to be associated with black swan grazing (Cygnus atratus Latham), with maintains a canopy of hydrilla consistently 1 m below the water surface

    Predicted modulated differential rates for direct WIMP searches at low energy transfers

    Full text link
    The differential event rate for direct detection of dark matter, both the time averaged and the modulated one due to the motion of the Earth, are discussed. The calculations focus on relatively light cold dark matter candidates (WIMP) and low energy transfers. It is shown that for sufficiently light WIMPs the extraction of relatively large nucleon cross sections is possible. Furthermore for some WIMP masses the modulation amplitude may change sign, meaning that, in such a case, the maximum rate may occur six months later than naively expected. This effect can be exploited to yield information about the mass of the dark matter candidate, if and when the observation of the modulation of the event rate is established.Comment: 16 pages, 22 figures; references adde

    Bounds on the cosmological abundance of primordial black holes from diffuse sky brightness: single mass spectra

    Get PDF
    We constrain the mass abundance of unclustered primordial black holes (PBHs), formed with a simple mass distribution and subject to the Hawking evaporation and particle absorption from the environment. Since the radiative flux is proportional to the numerical density, an upper bound is obtained by comparing the calculated and observed diffuse background values, (similarly to the Olbers paradox in which point sources are considered) for finite bandwidths. For a significative range of formation redshifts the bounds are better than several values obtained by other arguments Ωpbh1010\Omega_{pbh} \leq 10^{-10}; and they apply to PBHs which are evaporating today.Comment: 20 pages, 5 figures, to appear in PR

    Born reciprocity and the 1/r potential

    Full text link
    Many structures in nature are invariant under the transformation (p,r)->(br,-p/b), where b is some scale factor. Born's reciprocity hypothesis affirms that this invariance extends to the entire Hamiltonian and equations of motion. We investigate this idea for atomic physics and galactic motion, where one is basically dealing with a 1/r potential and the observations are very accurate, so as to determine the scale b=mΩb = m\Omega. We find that an Ω1.5×1015\Omega \sim 1.5\times 10^{-15} Hz has essentially no effect on atomic physics but might possibly offer an explanation for galactic rotation, without invoking dark matter.Comment: 14 pages, with 4 figures, Latex, requires epsf.tex and iop style file

    One loop renormalization of the four-dimensional theory for quantum dilaton gravity.

    Get PDF
    We study the one loop renormalization in the most general metric-dilaton theory with the second derivative terms only. The general theory can be divided into two classes, models of one are equivalent to conformally coupled with gravity scalar field and also to general relativity with cosmological term. The models of second class have one extra degree of freedom which corresponds to dilaton. We calculate the one loop divergences for the models of second class and find that the arbitrary functions of dilaton in the starting action can be fine-tuned in such a manner that all the higher derivative counterterms disappear on shell. The only structures in both classical action and counterterms, which survive on shell, are the potential (cosmological) ones. They can be removed by renormalization of the dilaton field which acquire the nontrivial anomalous dimension, that leads to the effective running of the cosmological constant. For some of the renormalizable solutions of the theory the observable low energy value of the cosmological constant is small as compared with the Newtonian constant. We also discuss another application of our result.Comment: 21 pages, latex, no figures

    Analysis of travelling waves associated with the modelling of aerosolised skin grafts

    Get PDF
    A previous model developed by the authors investigates the growth patterns of keratinocyte cell colonies after they have been applied to a burn site using a spray technique. In this paper, we investigate a simplified one-dimensional version of the model. This model yields travelling wave solutions and we analyse the behaviour of the travelling waves. Approximations for the rate of healing and maximum values for both the active healing and the healed cell densities are obtained

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    The issue of Dark Energy in String Theory

    Get PDF
    Recent astrophysical observations, pertaining to either high-redshift supernovae or cosmic microwave background temperature fluctuations, as those measured recently by the WMAP satellite, provide us with data of unprecedented accuracy, pointing towards two (related) facts: (i) our Universe is accelerated at present, and (ii) more than 70 % of its energy content consists of an unknown substance, termed dark energy, which is believed responsible for its current acceleration. Both of these facts are a challenge to String theory. In this review I outline briefly the challenges, the problems and possible avenues for research towards a resolution of the Dark Energy issue in string theory.Comment: Based on Invited lecture at the ``Third Aegean Summer School on: The Invisible Universe: Dark matter and Dark energy'', Karfas, Chios Island (Greece) September 26-October 1 200

    Multiple sequence alignment based on set covers

    Full text link
    We introduce a new heuristic for the multiple alignment of a set of sequences. The heuristic is based on a set cover of the residue alphabet of the sequences, and also on the determination of a significant set of blocks comprising subsequences of the sequences to be aligned. These blocks are obtained with the aid of a new data structure, called a suffix-set tree, which is constructed from the input sequences with the guidance of the residue-alphabet set cover and generalizes the well-known suffix tree of the sequence set. We provide performance results on selected BAliBASE amino-acid sequences and compare them with those yielded by some prominent approaches
    corecore