3,328 research outputs found
Power System Stability With a High Penetration of Inverter-Based Resources
Inverter-based resources (IBRs) possess dynamics that are significantly different from those of synchronous-generator-based sources and as IBR penetrations grow the dynamics of power systems are changing. This article discusses the characteristics of the new dynamics and examines how they can be accommodated into the long-standing categorizations of power system stability in terms of angle, frequency, and voltage stability. It is argued that inverters are causing the frequency range over which angle, frequency, and voltage dynamics act to extend such that the previously partitioned categories are now coupled and further coupled to new electromagnetic modes. While grid-forming (GFM) inverters share many characteristics with generators, grid-following (GFL) inverters are different. This is explored in terms of similarities and differences in synchronization, inertia, and voltage control. The concept of duality is used to unify the synchronization principles of GFM and GFL inverters and, thus, established the generalized angle dynamics. This enables the analytical study of GFM-GFL interaction, which is particularly important to guide the placement of GFM apparatuses and is even more important if GFM inverters are allowed to fall back to the GFL mode during faults to avoid oversizing to support short-term overload. Both GFL and GFM inverters contribute to voltage strength but with marked differences, which implies new features of voltage stability. Several directions for further research are identified, including: 1) extensions of nonlinear stability analysis to accommodate new inverter behaviors with cross-coupled time frames; 2) establishment of spatial–temporal indices of system strength and stability margin to guide the provision of new stability services; and 3) data-driven approaches to combat increased system complexity and confidentiality of inverter models
Impedance-based Root-cause Analysis: Comparative Study of Impedance Models and Calculation of Eigenvalue Sensitivity
Impedance models of power systems are useful when state-space models of
apparatus such as inverter-based resources (IBRs) have not been made available
and instead only black-box impedance models are available. For tracing the root
causes of poor damping and tuning modes of the system, the sensitivity of the
modes to components and parameters are needed. The so-called critical
admittance-eigenvalue sensitivity based on nodal admittance model has provided
a partial solution but omits meaningful directional information. The
alternative whole-system impedance model yields participation factors of
shunt-connected apparatus with directional information that allows separate
tuning for damping and frequency, yet do not cover series-connected components.
This paper formalises the relationships between the two forms of impedance
models and between the two forms of root-cause analysis. The calculation of
system eigenvalue sensitivity in impedance models is further developed, which
fills the gaps of previous research and establishes a complete theory of
impedance-based root-cause analysis. The theoretical relationships and the
tuning of parameters have been illustrated with a three-node passive network, a
modified IEEE 14-bus network and a modified NETS-NYPS 68-bus network, showing
that tools can be developed for tuning of IBR-rich power systems where only
black-box impedance models are available
Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing
We describe a method for improving coherent control through the use of
detailed knowledge of the system's Hamiltonian. Precise unitary transformations
were obtained by strongly modulating the system's dynamics to average out
unwanted evolution. With the aid of numerical search methods, pulsed
irradiation schemes are obtained that perform accurate, arbitrary, selective
gates on multi-qubit systems. Compared to low power selective pulses, which
cannot average out all unwanted evolution, these pulses are substantially
shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR
techniques on homonuclear spin systems are used to demonstrate the accuracy of
these gates both in simulation and experiment. Simulations of the coherent
evolution of a 3-qubit system show that the control sequences faithfully
implement the unitary operations, typically yielding gate fidelities on the
order of 0.999 and, for some sequences, up to 0.9997. The experimentally
determined density matrices resulting from the application of different control
sequences on a 3-spin system have overlaps of up to 0.99 with the expected
states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of
Chemical Physics, in pres
A new method for imaging nuclear threats using cosmic ray muons
Muon tomography is a technique that uses cosmic ray muons to generate three
dimensional images of volumes using information contained in the Coulomb
scattering of the muons. Advantages of this technique are the ability of cosmic
rays to penetrate significant overburden and the absence of any additional dose
delivered to subjects under study above the natural cosmic ray flux.
Disadvantages include the relatively long exposure times and poor position
resolution and complex algorithms needed for reconstruction. Here we
demonstrate a new method for obtaining improved position resolution and
statistical precision for objects with spherical symmetry
- …