3,444 research outputs found
Grass Control in Corn with Accent and Beacon
The traditional method for grass control in corn is based on using herbicides applied to soil and incorporated before planting or to the soil surface after planting. This approach has been successful in controlling crabgrass, fall panicum and foxtails, but johnsongrass and shattercane control was sometimes inadequate
Face engagement during infancy predicts later face recognition ability in younger siblings of children with autism
Face recognition difficulties are frequently documented in children with autism spectrum disorders (ASD). It has been hypothesized that these difficulties result from a reduced interest in faces early in life, leading to decreased cortical specialization and atypical development of the neural circuitry for face processing. However, a recent study by our lab demonstrated that infants at increased familial risk for ASD, irrespective of their diagnostic status at 3 years, exhibit a clear orienting response to faces. The present study was conducted as a follow-up on the same cohort to investigate how measures of early engagement with faces relate to face-processing abilities later in life. We also investigated whether face recognition difficulties are specifically related to an ASD diagnosis, or whether they are present at a higher rate in all those at familial risk. At 3 years we found a reduced ability to recognize unfamiliar faces in the high-risk group that was not specific to those children who received an ASD diagnosis, consistent with face recognition difficulties being an endophenotype of the disorder. Furthermore, we found that longer looking at faces at 7 months was associated with poorer performance on the face recognition task at 3 years in the high- risk group. These findings suggest that longer looking at faces in infants at risk for ASD might reflect early face-processing difficulties and predicts difficulties with recognizing faces later in life
Face engagement during infancy predicts later face recognition ability in younger siblings of children with autism
Face recognition difficulties are frequently documented in children with autism spectrum disorders (ASD). It has been hypothesized that these difficulties result from a reduced interest in faces early in life, leading to decreased cortical specialization and atypical development of the neural circuitry for face processing. However, a recent study by our lab demonstrated that infants at increased familial risk for ASD, irrespective of their diagnostic status at 3 years, exhibit a clear orienting response to faces. The present study was conducted as a follow-up on the same cohort to investigate how measures of early engagement with faces relate to face-processing abilities later in life. We also investigated whether face recognition difficulties are specifically related to an ASD diagnosis, or whether they are present at a higher rate in all those at familial risk. At 3 years we found a reduced ability to recognize unfamiliar faces in the high-risk group that was not specific to those children who received an ASD diagnosis, consistent with face recognition difficulties being an endophenotype of the disorder. Furthermore, we found that longer looking at faces at 7 months was associated with poorer performance on the face recognition task at 3 years in the high- risk group. These findings suggest that longer looking at faces in infants at risk for ASD might reflect early face-processing difficulties and predicts difficulties with recognizing faces later in life
CD28 and staphylococcal enterotoxins synergize to induce MHC-independent T-cell proliferation
The bacterial exotoxins staphylococcal enterotoxin A and B (SEA and SEB) mediate disease through their effects on T lymphocytes. In this manuscript we have demonstrated that both SEA and SEB can directly activate purified T cells in the absence of accessory cells as determined by a transition from G0 to G1 and induction of IL-2 receptor expression. However, neither SEA nor SEB alone was sufficient to result in T-cell proliferation. The induction of T-cell proliferation by SEB or SEA required the addition of a second costimulatory signal. This could be provided by either accessory cells or monoclonal antibody stimulation of CD28. As previously reported, T-cell proliferation induced by enterotoxin in the presence of accessory cells was partially inhibited by a blocking antibody against class II MHC. In contrast, in purified T cells when costimulation was provided through CD28, proliferation was not inhibited by class II antibody, and HLA-DR expression was not detectable. In addition, costimulation through CD28 was partially resistant to the effects of cyclosporin A. These results demonstrate that CD28 costimulation is sufficient to induce proliferation of enterotoxin-activated T cells, and that this effect is independent of class II MHC expression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29738/1/0000074.pd
Common infections and neuroimaging markers of dementia in three UK cohort studies
INTRODUCTION: We aimed to investigate associations between common infections and neuroimaging markers of dementia risk (brain volume, hippocampal volume, white matter lesions) across three population-based studies. METHODS: We tested associations between serology measures (pathogen serostatus, cumulative burden, continuous antibody responses) and outcomes using linear regression, including adjustments for total intracranial volume and scanner/clinic information (basic model), age, sex, ethnicity, education, socioeconomic position, alcohol, body mass index, and smoking (fully adjusted model). Interactions between serology measures and apolipoprotein E (APOE) genotype were tested. Findings were meta-analyzed across cohorts (Nmain = 2632; NAPOE-interaction = 1810). RESULTS: Seropositivity to John Cunningham virus associated with smaller brain volumes in basic models (β = -3.89 mL [-5.81, -1.97], Padjusted < 0.05); these were largely attenuated in fully adjusted models (β = -1.59 mL [-3.55, 0.36], P = 0.11). No other relationships were robust to multiple testing corrections and sensitivity analyses, but several suggestive associations were observed. DISCUSSION: We did not find clear evidence for relationships between common infections and markers of dementia risk. Some suggestive findings warrant testing for replication
Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?
The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests
Nutritional Skewing of Conceptus Sex in Sheep: Effects of a Maternal Diet Enriched in Rumen-Protected Polyunsaturated Fatty acids (PUFA)
doi:10.1186/1477-7827-6-21Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of
offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid(PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio.The research was supported by USDA/CSREES/NRI Grant 2001-35203-
10693 (to RMR) and a Life Sciences Molecular Biology Fellowship, University of Missouri (partial salary support for MPG)
Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in Great Cormorants
Aquatic endotherms living in polar regions are faced with a multitude of challenges, including low air and water temperatures and low illumination, especially in winter. Like other endotherms from cold environments, Great Cormorants (Phalacrocorax carbo) living in Arctic waters were hypothesized to respond to these challenges through combination of high daily rate of energy expenditure (DEE) and high food requirements, which are met by a high rate of catch per unit effort (CPUE). CPUE has previously been shown in Great Cormorants to be the highest of any diving bird. In the present study, we tested this hypothesis by making the first measurements of DEE and foraging activity of Arctic-dwelling Great Cormorants throughout the annual cycle. We demonstrate that, in fact, Great Cormorants have surprisingly low rates of DEE. This low DEE is attributed primarily to very low levels of foraging activity, particularly during winter, when the cormorants spent only 2% of their day submerged. Such a low level of foraging activity can only be sustained through consistently high foraging performance. We demonstrate that Great Cormorants have one of the highest recorded CPUEs for a diving predator; 18.6 g per minute submerged (95% prediction interval 13.0-24.2 g/min) during winter. Temporal variation in CPUE was investigated, and highest CPUE was associated with long days and shallow diving depths. The effect of day length is attributed to seasonal variation in prey abundance. Shallow diving leads to high CPUE because less time is spent swimming between the surface and the benthic zone where foraging occurs. Our study demonstrates the importance of obtaining accurate measurements of physiology and behavior from free-living animals when attempting to understand their ecology
Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer
Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional α-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B
Climate change, public health, and animal welfare: towards a One Health approach to reducing animal agriculture’s climate footprint
Animal agriculture contributes significantly to global greenhouse gas (GHG) emissions—an estimated 12%-20% of total anthropogenic emissions. This has led both governmental and private actors to propose various ways to mitigate those climate impacts. This paper applies a One Health lens to the issue, arguing that the choice of solutions should not only consider the potential to reduce GHG emissions—which is not always a given—but also the implications for public health and animal welfare. With this perspective, we examine the potential public health and animal welfare impacts of three types of strategies that are often proposed: (1) “sustainable intensification” methods, aimed at maintaining or increasing production while limiting emissions and avoiding further land conversion; (2) “species shift” approaches, which focus on changing diets to consume meat from animals produced with lower GHG emissions instead of that of animals associated with higher emissions; and (3) “systemic dietary change” approaches that promote shifts towards whole plant-based foods or novel alternatives to conventional animal products. We discuss how some approaches—particularly those associated with sustainable intensification and species shift—could introduce new and significant risks to public health and animal welfare. Promoting systemic dietary change helps to overcome some of these challenges, but requires careful attention to equity to ensure that vulnerable populations still have access to the nutrients they need. We end with recommendations for a more holistic approach to reducing emissions from farmed animals that can help avoid trade-offs and increase synergies with other societal goals
- …