8,216 research outputs found

    Hall Mobility Measurements and Chemical Stability of Ultrathin, Methylated Si(111)-on-Insulator Films

    Get PDF
    The chemical and electronic properties of 10−20 nm thick, methylated Si(111)-on-insulator (CH_3/Si(111)_(SOI)) thin films, prepared using a wet chemical chlorination/methylation procedure, are investigated. X-ray photoelectron spectroscopy reveals that CH_3/Si(111)_(SOI) is resistant to oxidation upon exposure to air and to various device fabrication schemes and associated chemicals. Temperature-dependent Hall mobility measurements yield results that are dependent upon the duration of the chlorination step. For short-time chlorination steps, bulklike mobilities are observed, and the dominant scattering mechanism arises from ionized impurities. For longer time chlorination steps, surface roughness or neutral impurity scattering limit the carrier mobilities

    Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua

    Get PDF
    We propose a scenario to stabilize all geometric moduli - that is, the complex structure, Kahler moduli and the dilaton - in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with non-perturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized - in the most restrictive case, leaving only one combination of Kahler moduli and the dilaton as a flat direction. At this stage, the remaining moduli space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate non-perturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries which arise from the required bundle constructions. We present a specific example, with a consistent choice of non-perturbative effects, where all remaining flat directions are stabilized in an AdS vacuum.Comment: 24 pages, 2 figure

    Teachers' classroom feedback: still trying to get it right

    Get PDF
    This article examines feedback traditionally given by teachers in schools. Such feedback tends to focus on children's acquisition and retrieval of externally prescribed knowledge which is then assessed against mandated tests. It suggests that, from a sociocultural learning perspective, feedback directed towards such objectives may limit children's social development. In this article, I draw on observation and interview data gathered from a group of 27 9- to 10-year olds in a UK primary school. These data illustrate the children's perceived need to conform to, rather than negotiate, the teacher's feedback comments. They highlight the children's sense that the teacher's feedback relates to school learning but not to their own interests. The article also includes alternative examples of feedback which draw on children's own inquiries and which relate to the social contexts within which, and for whom, they act. It concludes by suggesting that instead of looking for the right answer to the question of what makes teachers' feedback effective in our current classrooms, a more productive question might be how a negotiation can be opened up among teachers and learners themselves, about how teachers' feedback could support children's learning most appropriately

    On the plane-wave cubic vertex

    Full text link
    The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are derived using the contour integration techniques developed in our earlier paper. This simplifies the original derivation of the vertex. In particular, the Neumann matrices are written in terms of \mu-deformed Gamma-functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The asymptotics of the \mu-deformed Gamma-functions allow one to determine the large-\mu behaviour of the Neumann matrices including exponential corrections. We provide an explicit expression for the first exponential correction and make a conjecture for the subsequent exponential correction terms.Comment: 26 pages, 1 figure; harvmac (b); v4: minor corrections in appendix

    On the exact open-closed vertex in plane-wave light-cone string field theory

    Full text link
    The open-closed vertex in the maximally supersymmetric type IIB plane-wave light-cone string field theory is considered and an explicit solution for the bosonic part of the vertex is derived, valid for all values of the mass parameter, \mu. This vertex is of relevance to IIB plane-wave orientifolds, as well as IIB plane-wave strings in the presence of D-branes and their gauge theory duals. Methods of complex analysis are used to develop a systematic procedure for obtaining the solution. This procedure is first applied to the vertex in flat space and then extended to the plane-wave case. The plane-wave solution for the vertex requires introducing certain ``\mu-deformed Gamma functions'', which are generalizations of the ordinary Gamma function. The behaviour of the Neumann matrices is graphically illustrated and their large-\mu asymptotics are analysed.Comment: 35 pages, 7 figures; v4: minor changes in appendi

    Integrating user-centred design in the development of a silent speech interface based on permanent magnetic articulography

    Get PDF
    Abstract: A new wearable silent speech interface (SSI) based on Permanent Magnetic Articulography (PMA) was developed with the involvement of end users in the design process. Hence, desirable features such as appearance, port-ability, ease of use and light weight were integrated into the prototype. The aim of this paper is to address the challenges faced and the design considerations addressed during the development. Evaluation on both hardware and speech recognition performances are presented here. The new prototype shows a com-parable performance with its predecessor in terms of speech recognition accuracy (i.e. ~95% of word accuracy and ~75% of sequence accuracy), but significantly improved appearance, portability and hardware features in terms of min-iaturization and cost

    Reciprocal Perspective for Improved Protein-Protein Interaction Prediction

    Get PDF
    All protein-protein interaction (PPI) predictors require the determination of an operational decision threshold when differentiating positive PPIs from negatives. Historically, a single global threshold, typically optimized via cross-validation testing, is applied to all protein pairs. However, we here use data visualization techniques to show that no single decision threshold is suitable for all protein pairs, given the inherent diversity of protein interaction profiles. The recent development of high throughput PPI predictors has enabled the comprehensive scoring of all possible protein-protein pairs. This, in turn, has given rise to context, enabling us now to evaluate a PPI within the context of all possible predictions. Leveraging this context, we introduce a novel modeling framework called Reciprocal Perspective (RP), which estimates a localized threshold on a per-protein basis using several rank order metrics. By considering a putative PPI from the perspective of each of the proteins within the pair, RP rescores the predicted PPI and applies a cascaded Random Forest classifier leading to improvements in recall and precision. We here validate RP using two state-of-the-art PPI predictors, the Protein-protein Interaction Prediction Engine and the Scoring PRotein INTeractions methods, over five organisms: Homo sapiens, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and Mus musculus. Results demonstrate the application of a post hoc RP rescoring layer significantly improves classification (p < 0.001) in all cases over all organisms and this new rescoring approach can apply to any PPI prediction method

    The Cloud Services Innovation Platform-Enabling Service-Based Environmental Modelling Using Infrastructure-As-A-Service Cloud Computing

    Get PDF
    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user\u27s personal computers (PCs). Migration to service - based modelling centralizes the modelling functions to service hosts on the Internet . Users no longer require high-end PCs to run models and model updates encapsulating science advances can be disseminated more rapidly by hosting the modelling functions centrally via an Internet host instead of requiring software updates to user\u27s PCs . In this paper we present the Cloud Services Innovation Platform (CSIP), an Infrastructure -as -a -Service cloud application architecture , used to prototype development of distributed and scalable environmental modelling services. CSIP aims to provide modelling as a service to support both interactive (synchronous) and batch (asynchronous) modelling. CSIP enables c loud-based computing resources to be harnessed for both new and existing environmental models supporting the disaggregation of work into subtasks which execute in parallel using a scalable number of virtual machines. This paper presents CSIP \u27s implementation using the RUSLE2 model as a prototype model. RUSLE2 model service benchmarks are presented to demonstrate performance gains from using cloud resources. We also provide benchmarks for virtualization overhead observed using popular virtual machine hypervisors and demonstrate how application profile characteristics significantly impact performance when virtualized
    • …
    corecore