52 research outputs found

    First-principles extrapolation method for accurate CO adsorption energies on metal surfaces

    Full text link
    We show that a simple first-principles correction based on the difference between the singlet-triplet CO excitation energy values obtained by DFT and high-level quantum chemistry methods yields accurate CO adsorption properties on a variety of metal surfaces. We demonstrate a linear relationship between the CO adsorption energy and the CO singlet-triplet splitting, similar to the linear dependence of CO adsorption energy on the energy of the CO 2π\pi* orbital found recently {[Kresse {\em et al.}, Physical Review B {\bf 68}, 073401 (2003)]}. Converged DFT calculations underestimate the CO singlet-triplet excitation energy ΔES−T\Delta E_{\rm S-T}, whereas coupled-cluster and CI calculations reproduce the experimental ΔES−T\Delta E_{\rm S-T}. The dependence of EchemE_{\rm chem} on ΔES−T\Delta E_{\rm S-T} is used to extrapolate EchemE_{\rm chem} for the top, bridge and hollow sites for the (100) and (111) surfaces of Pt, Rh, Pd and Cu to the values that correspond to the coupled-cluster and CI ΔES−T\Delta E_{\rm S-T} value. The correction reproduces experimental adsorption site preference for all cases and obtains EchemE_{\rm chem} in excellent agreement with experimental results.Comment: Table sent as table1.eps. 3 figure

    Editorial

    No full text
    • 

    corecore