4 research outputs found

    Particle dependence of elliptic flow in Au+Au collisions at sNN=\sqrt{s_{NN}}= 200 GeV

    Full text link
    The elliptic flow parameter (v2v_2) for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} has been measured at mid-rapidity in Au + Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV by the STAR collaboration. The v2v_2 values for both KS0K_S^{0} and Λ+Λˉ\Lambda+\bar{\Lambda} saturate at moderate pTp_T, deviating from the hydrodynamic behavior observed in the lower pTp_T region. The saturated v2v_2 values and the pTp_T scales where the deviation begins are particle dependent. The particle-type dependence of v2v_2 shows features expected from the hadronization of a partonic ellipsoid by coalescence of co-moving quarks. These results will be discussed in relation to the nuclear modification factor (RCPR_{CP}) which has also been measured for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} by the STAR collaboration.Comment: 6 pages, 3 figures, Strange Quark Matter 2003 Conference (SQM 2003): updated with 2 figures from original talk that did not appear in the journa

    Meson and baryon elliptic flow at high pT from parton coalescence

    Full text link
    The large and saturating differential elliptic flow v2(pT) observed in Au+Au reactions at RHIC so far could only be explained assuming an order of magnitude denser initial parton system than estimated from perturbative QCD. Hadronization via parton coalescence can resolve this ``opacity puzzle'' because it enhances hadron elliptic flow at large pT relative to that of partons at the same transverse momentum. An experimentally testable consequence of the coalescence scenario is that v2(pT) saturates at about 50% higher values for baryons than for mesons. In addition, if strange quarks have weaker flow than light quarks, hadron v2 at high pT decreases with relative strangeness content.Comment: Talk at SQM2003 [7th Int. Conf. on Strangeness in Quark Matter (Atlantic Beach, NC, USA, Mar 12-17, 2003)] - 6 pages, 5 eps figs, IOP style file

    Andrology (Male Fertility, Spermatogenesis)

    No full text
    corecore