13,142 research outputs found

    Effective interactions and superconductivity in the t-J model in the large-N limit

    Full text link
    The feasibility of a perturbation expansion for Green's functions of the t-J model directly in terms of X-operators is demonstrated using the Baym- Kadanoff functional method. As an application we derive explicit expressions for the kernel of the linearized equation for the superconducting order parameter in leading order of a 1/N expansion. The linearized equation is solved numerically on a square lattice. We find that a reasonably strong instability occurs only for even frequency pairing with d-wavelike symmetry. Results for the transition temperature and the effective interaction are given as a function of doping.Comment: 31 pages, 11 figure

    C-Axis Tunneling Spectra in High-Tc_c Superconductors in the Presence of a d Charge-Density Wave

    Full text link
    The optimally doped and underdoped region of the tJt-J model at large N (N is the number of spin components) is governed by the competition of d-wave superconductivity (SC) and a d Charge-Density Wave (d-CDW).The partial destruction of the Fermi surface by the d-CDW and the resulting density of states are discussed. Furthermore, c-axis conductances for incoherent and coherent tunneling are calculated, considering both an isotropic and an anisotropic in-plane momentum dependence of the hopping matrix element between the planes. The influence of self-energy effects on the conductances is also considered using a model where the electrons interact with a dispersionless, low-lying branch of bosons. We show that available tunneling spectra from break-junctions are best explained by assuming that they result from incoherent tunneling with a strongly anisotropic hopping matrix element of the form suggested by band structure calculations. The conductance spectra are then characterized by one single peak which evolves continuously from the superconducting to the d-CDW state with decreasing doping. The intrinsic c-axis tunneling spectra are, on the other hand, best explained by coherent tunneling. Calculated spectra show at low temperatures two peaks due to SC and d-CDW. With increasing temperature the BCS-like peak moves to zero voltage and vanishes at Tc_c,exactly as in experiment.Our results thus can explain why break junction and intrinsic tunneling spectra are different from each other. Moreover, they support a scenario of two competing order parameters in the underdoped region of high-Tc_c superconductors.Comment: 12 pages, 16 figure

    Superconductivity, d Charge-Density Wave and Electronic Raman Scattering in High-Tc_c Superconductors

    Full text link
    The competition of superconductivity and a d charge-density wave (CDW) is studied in the t-J model as a function of temperature at large N where N is the number of spin components. Applying the theory to electronic Raman scattering the temperature dependence of the B1gB_{1g} and the A1gA_{1g} spectra are discussed for a slightly underdoped case.Comment: 2 pages, 3 figures, Proc. M2S-HTSC-VII, to appear in Physica

    Electronic correlations, electron-phonon interaction, and isotope effect in high-Tc cuprates

    Full text link
    Using a large-N expansion we present and solve the linearized equation for the superconducting gap for a generalized t-J model which also contains phonons within a Holstein model. The leading Tc has d-wave symmetry with phonons giving a positive contribution to Tc. The corresponding isotope coefficient is very small at optimal doping and increases towards the classical value 1/2 with increasing dopings similar as in many cuprates.Comment: 14 pages, 7 figure

    Collective excitations in unconventional charge-density wave systems

    Full text link
    The excitation spectrum of the t-J model is studied on a square lattice in the large NN limit in a doping range where a dd-densitydensity-wavewave (DDW) forms below a transition temperature TT^\star. Characteristic features of the DDW ground state are circulating currents which fluctuate above and condense into a staggered flux state below TT^\star and density fluctuations where the electron and the hole are localized at different sites. General expressions for the density response are given both above and below TT^\star and applied to Raman, X-ray, and neutron scattering. Numerical results show that the density response is mainly collective in nature consisting of broad, dispersive structures which transform into well-defined peaks mainly at small momentum transfers. One way to detect these excitations is by inelastic neutron scattering at small momentum transfers where the cross section (typically a few per cents of that for spin scattering) is substantially enhanced, exhibits a strong dependence on the direction of the transferred momentum and a well-pronounced peak somewhat below twice the DDW gap. Scattering from the DDW-induced Bragg peak is found to be weaker by two orders of magnitude compared with the momentum-integrated inelastic part.Comment: 10 pages, 8 figure

    Influence of collective effects and the d-CDW on electronic Raman scattering in high-Tc_c superconductors

    Full text link
    Electronic Raman scattering in high-Tc_c superconductors is studied within the t-J model. It is shown that the A1g_{1g} and B1g_{1g} spectra are dominated by amplitude fluctuations of the superconducting and the d-wave CDW order parameters, respectively. The B2g_{2g} spectrum contains no collective effects and its broad peak reflects vaguely the doping dependence of Tc_c, similarly to the pronounced peak in the A1g_{1g} spectrum. The agreement of our theory with the experiment supports the picture of two different, competing order parameters in the underdoped regime of high-Tc_c superconductors.Comment: 4 pages, 4 figures, will appear in PR

    Analysis of monotonicity properties of some rule interestingness measures

    Get PDF
    One of the crucial problems in the field of knowledge discovery is development of good interestingness measures for evaluation of the discovered patterns. In this paper, we consider quantitative, objective interestingness measures for "if..., then... " association rules. We focus on three popular interestingness measures, namely rule interest function of Piatetsky-Shapiro, gain measure of Fukuda et al., and dependency factor used by Pawlak. We verify whether they satisfy the valuable property M of monotonic dependency on the number of objects satisfying or not the premise or the conclusion of a rule, and property of hypothesis symmetry (HS). Moreover, analytically and through experiments we show an interesting relationship between those measures and two other commonly used measures of rule support and anti-support

    A comparison between different optimization criteria for tuned mass dampers design

    Get PDF
    Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various char- acterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micro- mechanical devices and nano resonant beam
    corecore