7 research outputs found

    Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.)

    Get PDF
    Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. This study examines the nutritional quality of mealworm larvae processed by rack oven drying, vacuum drying or freeze drying, respectively. Proximate composition and fatty acid profile were comparable between the dried larvae. In contrast, larvae color impressions and volatile compound profiles were very much dependent on processing procedure. High-temperature rack oven drying caused pronounced darkening with rather low content of volatiles, pointing toward the progress of Maillard reaction. On the other hand, vacuum drying or freeze drying led to enrichment of volatile Maillard reaction and lipid oxidation intermediates, whose actual sensory relevance needs to be clarified in the future. Beyond sensory and visual importance drying intermediates have to be considered with regard to their metal ion chelating ability; in particular for essential trace elements such as Zn2+. This study found comparable total zinc contents for the differently dried mealworm samples. However, dried larvae, in particular after rack oven drying, had only low zinc accessibility, which was between 20% and 40%. Therefore, bioaccessibility rather than total zinc has to be considered when their contribution to meeting the nutritional requirements for zinc in humans and animals is evaluated.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitÀt Berli

    Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes

    Get PDF
    The yellow mealworm (Tenebrio molitor L., Coleoptera: Tenebrionidae) is an edible insect and due to its ubiquitous occurrence and the frequency of consumption, a promising candidate for the cultivation and production on an industrial scale. Moreover, it is the first insect to be approved by EFSA 2021 following the Novel Food Regulation. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. The focus of the present study was to analyse the chemical composition, antioxidant capacity, volatile compound profile and colouring of mealworm larvae dried in various regimes (freeze-drying, microwave drying, infrared drying, rack-oven drying and high-frequency drying). Proximate composition and fatty acid profile were similar for all dried larvae. Freeze dried larvae were predominantly marked by lipid oxidation with significantly higher peroxide values, secondary/tertiary oxidation products in the headspace GC-MS profiles and lower antioxidant capacity. High-temperature treatment in the rack oven—and to some extent also infrared or microwave drying—led to mealworm larvae darkening and the appearance of volatile Maillard secondary products such as 2-methylpropanoic acid, 2-/3-methylbutanoic acid and alkylpyrazines. High-frequency drying as a new emerging technology in insect processing was the most cost-effective method with energy costs of solely 0.09 Є/kg T. molitor L. leading to final larval material characterized by both lipid oxidation and nonenzymatic Maillard-browning

    Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil

    No full text
    The lipid oxidation of fats and oils leads to volatile organic compounds, having a decisive influence on the sensory quality of foods. To understand formation and degradation pathways and to evaluate the suitability of lipid-derived aldehydes as marker substances for the oxidative status of foods, the formation of secondary and tertiary lipid oxidation compounds was investigated with gas chromatography in rapeseed oils. After 120 min, up to 65 compounds were detected. In addition to secondary degradation products, tertiary products such as alkyl furans, ketones, and aldol condensation products were also found. The comparison of rapeseed oils, differing in their initial peroxide values, showed that the formation rate of secondary compounds was higher in pre-damaged oils. Simultaneously, a faster degradation, especially of unsaturated aldehydes, was observed. Consequently, the formation of tertiary products (e.g., alkyl furans, aldol adducts) from well-known lipid oxidation products (i.e., propanal, hexanal, 2-hexenal, and 2-nonenal) was investigated in model systems. The experiments showed that these compounds form the new substances in subsequent reactions, especially, when other compounds such as phospholipids are present. Hexanal and propanal are suitable as marker compounds in the early phase of lipid oxidation, but at an advanced stage they are subject to aldol condensation. Consequently, the detection of tertiary degradation products needs to be considered in advanced lipid oxidation.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische UniversitÀt Berli

    The Formation of Methyl Ketones during Lipid Oxidation at Elevated Temperatures

    No full text
    Lipid oxidation and the resulting volatile organic compounds are the main reasons for a loss of food quality. In addition to typical compounds, such as alkanes, aldehydes and alcohols, methyl ketones like heptan-2-one, are repeatedly described as aroma-active substances in various foods. However, it is not yet clear from which precursors methyl ketones are formed and what influence amino compounds have on the formation mechanism. In this study, the formation of methyl ketones in selected food-relevant fats and oils, as well as in model systems with linoleic acid or pure secondary degradation products (alka-2,4-dienals, alken-2-als, hexanal, and 2-butyloct-2-enal), has been investigated. Elevated temperatures were chosen for simulating processing conditions such as baking, frying, or deep-frying. Up to seven methyl ketones in milk fat, vegetable oils, and selected model systems have been determined using static headspace gas chromatography-mass spectrometry (GC-MS). This study showed that methyl ketones are tertiary lipid oxidation products, as they are derived from secondary degradation products such as deca-2,4-dienal and oct-2-enal. The study further showed that the position of the double bond in the precursor compound determines the chain length of the methyl ketone and that amino compounds promote the formation of methyl ketones to a different degree. These compounds influence the profile of the products formed. As food naturally contains lipids as well as amino compounds, the proposed pathways are relevant for the formation of aroma-active methyl ketones in food.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische UniversitÀt Berli

    The Formation of Methyl Ketones during Lipid Oxidation at Elevated Temperatures

    No full text
    Lipid oxidation and the resulting volatile organic compounds are the main reasons for a loss of food quality. In addition to typical compounds, such as alkanes, aldehydes and alcohols, methyl ketones like heptan-2-one, are repeatedly described as aroma-active substances in various foods. However, it is not yet clear from which precursors methyl ketones are formed and what influence amino compounds have on the formation mechanism. In this study, the formation of methyl ketones in selected food-relevant fats and oils, as well as in model systems with linoleic acid or pure secondary degradation products (alka-2,4-dienals, alken-2-als, hexanal, and 2-butyloct-2-enal), has been investigated. Elevated temperatures were chosen for simulating processing conditions such as baking, frying, or deep-frying. Up to seven methyl ketones in milk fat, vegetable oils, and selected model systems have been determined using static headspace gas chromatography-mass spectrometry (GC-MS). This study showed that methyl ketones are tertiary lipid oxidation products, as they are derived from secondary degradation products such as deca-2,4-dienal and oct-2-enal. The study further showed that the position of the double bond in the precursor compound determines the chain length of the methyl ketone and that amino compounds promote the formation of methyl ketones to a different degree. These compounds influence the profile of the products formed. As food naturally contains lipids as well as amino compounds, the proposed pathways are relevant for the formation of aroma-active methyl ketones in food

    Utilization of Brewer’s Spent Grains and Agricultural Residues in Pig Feed Formation

    No full text
    In this study, brewer’s spent grains (BSG)-raw matrix was technologically and functionally improved by adding natural active ingredient carriers (crushed wheat, rapeseed, and pumpkin seed press cake) and using planetary roller extrusion and used as feed additive for pigs. Feeding trials were run for 189 days using 60 pigs with an age of 28 days. Pigs were grouped in a control group (fed with organic basic feed) and two experimental groups (fed with BSG 1 or BSG 2 in addition to organic basic feed). The 20 animals per group gained similar weight in the control group (306 g day−1 and 725 g day−1) and in the group fed with BSG 1 (282 g day−1 and 627 g day−1) or BSG 2 (250 g day−1 598 g day−1) in addition during rearing and fattening phases, respectively. Carcass evaluation revealed that meat quality did not differ between control and experimental groups. The BSG-based feed formulations tested seem to not result in negative effects on weight gain nor on meat quality. Animals were generally of good health and marketable quality, and thus the outcomes of this study are expected to contribute to an improved utilization strategy of brewer’s spent grains from breweries

    Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (<i>T. molitor</i> L.) under Different Drying Regimes

    No full text
    The yellow mealworm (Tenebrio molitor L., Coleoptera: Tenebrionidae) is an edible insect and due to its ubiquitous occurrence and the frequency of consumption, a promising candidate for the cultivation and production on an industrial scale. Moreover, it is the first insect to be approved by EFSA 2021 following the Novel Food Regulation. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. The focus of the present study was to analyse the chemical composition, antioxidant capacity, volatile compound profile and colouring of mealworm larvae dried in various regimes (freeze-drying, microwave drying, infrared drying, rack-oven drying and high-frequency drying). Proximate composition and fatty acid profile were similar for all dried larvae. Freeze dried larvae were predominantly marked by lipid oxidation with significantly higher peroxide values, secondary/tertiary oxidation products in the headspace GC-MS profiles and lower antioxidant capacity. High-temperature treatment in the rack oven—and to some extent also infrared or microwave drying—led to mealworm larvae darkening and the appearance of volatile Maillard secondary products such as 2-methylpropanoic acid, 2-/3-methylbutanoic acid and alkylpyrazines. High-frequency drying as a new emerging technology in insect processing was the most cost-effective method with energy costs of solely 0.09 Є/kg T. molitor L. leading to final larval material characterized by both lipid oxidation and nonenzymatic Maillard-browning
    corecore