4 research outputs found

    Features of Muscle Tissue Microstructure of Cattle in Industrial Agglomerations under the Environmental Pressure Conditions

    Get PDF
    The intensive development of the industrial sector, intensification of the agro-industrial complex, associated with the use of various fertilizers, active use of modern household chemicals lead to the constant increase in xenobiotics in the environment in both rural and urban agglomerations. There are settlements and farms within the industrial areas, therefore, the issue of accumulation of ecotoxicants in the organs and tissues of an animal, as well as the impact on the state of its health, is of particular importance. In the regions with tough environmental situation associated with anthropogenic contamination, xenobiotics of anthropogenic origin can directly or indirectly modify the activity of various body systems. The integral characteristic that reflects adaptive modifications of biota is the morphological and functional status of organs and tissues of an animal, including the state of muscle tissue. An analysis of the regenerative plastic potential of muscle tissue allows finding innovative approaches to assessing the effects of environmental impacts on animals. Up to the present day, the morphological and functional characteristics of muscle tissue in young animals and adult cattle have not been sufficiently studied in the conditions of the tough environmental situation of the Central Federal District of the Russian Federation. The issue of ecological pathologies of organs in productive animals is quite urgent for the territory of the Central Federal District with its developed agro-industrial complex and industry. The study of animals from the agglomeration of the large chemical plant showed that cattle react differently to pollutants. The animals demonstrated changes not only in hematological and biochemical parameters, but also in the morphological and functional status of muscle tissue

    Assessment of the bioavailability of minerals and antioxidant activity of the grain bread in the in vivo experiment

    Full text link
    The aim of the study was to determine the bioavailability of minerals and oxidation-antioxidant status in the laboratory animals fed with bread from regular and bioactivated wheat grain. Material and Methods ― Studies were conducted for 21 days on white inbred BALB/с mice. The animals were organized in three groups with 30 mice in each one. Group 1 (control group) was given the complete compound feed; Group 2 was fed with regular whole wheat bread; and Group 3 was given the bread from the bioactivated wheat grain. Their blood plasma was tested for total protein, cholesterol, glucose, low and high density lipoproteins, phosphorus, calcium, magnesium, iron, zinc, malondialdehyde (MDA) levels, and the activity of superoxide dismutase (SOD). Calcium was detected histochemically using McGee-Russell’s method with Alizarin red S. Results ― It was established that the levels of glucose, total protein, cholesterol, and lipids in the blood plasma of animals in all groups were within the physiological norms. There were no significant reliable deviations in the levels of mineral substances in the blood plasma of the animals in the study groups. However, the histochemical response of the bone tissue calcium to the Alizarin red S revealed significant differences in its content in the tissues between the animals of the three groups. At the 21st day of the experiment, the maximum light absorption of the colored specimen was observed in Group 3 which indicated higher calcium content in the bone tissue of the animals fed with the bread from the bioactivated wheat grain. The oxidation-antioxidant status of the animals in Groups 2 and 3 was higher than that of the control group. On the 21st day of the experiment, MDA content in the blood plasma of the animals in Group 3 was 0.04±0.017 mmol/L which is 2.0 and 1.5 times less as compared to Groups 1 and 2 respectively. The activity of SOD in the blood plasma on the 21st day of the experiment was the highest in Group 3 animals. Conclusion ― The experiment on the laboratory mice has shown that the use of the bread from the bioactivated wheat grain makes it possible to improve the bioavailability of minerals and increase the antioxidant activity of blood plasma

    Features of Muscle Tissue Microstructure of Cattle in Industrial Agglomerations Under the Environmental Pressure Conditions

    Full text link
    The intensive development of the industrial sector, intensification of the agro-industrial complex, associated with the use of various fertilizers, active use of modern household chemicals lead to the constant increase in xenobiotics in the environment in both rural and urban agglomerations. There are settlements and farms within the industrial areas, therefore, the issue of accumulation of ecotoxicants in the organs and tissues of an animal, as well as the impact on the state of its health, is of particular importance. In the regions with tough environmental situation associated with anthropogenic contamination, xenobiotics of anthropogenic origin can directly or indirectly modify the activity of various body systems. The integral characteristic that reflects adaptive modifications of biota is the morphological and functional status of organs and tissues of an animal, including the state of muscle tissue. An analysis of the regenerative plastic potential of muscle tissue allows finding innovative approaches to assessing the effects of environmental impacts on animals. Up to the present day, the morphological and functional characteristics of muscle tissue in young animals and adult cattle have not been sufficiently studied in the conditions of the tough environmental situation of the Central Federal District of the Russian Federation. The issue of ecological pathologies of organs in productive animals is quite urgent for the territory of the Central Federal District with its developed agro-industrial complex and industry. The study of animals from the agglomeration of the large chemical plant showed that cattle react differently to pollutants. The animals demonstrated changes not only in hematological and biochemical parameters, but also in the morphological and functional status of muscle tissue
    corecore