28 research outputs found
Automatic Liver Segmentation Using an Adversarial Image-to-Image Network
Automatic liver segmentation in 3D medical images is essential in many
clinical applications, such as pathological diagnosis of hepatic diseases,
surgical planning, and postoperative assessment. However, it is still a very
challenging task due to the complex background, fuzzy boundary, and various
appearance of liver. In this paper, we propose an automatic and efficient
algorithm to segment liver from 3D CT volumes. A deep image-to-image network
(DI2IN) is first deployed to generate the liver segmentation, employing a
convolutional encoder-decoder architecture combined with multi-level feature
concatenation and deep supervision. Then an adversarial network is utilized
during training process to discriminate the output of DI2IN from ground truth,
which further boosts the performance of DI2IN. The proposed method is trained
on an annotated dataset of 1000 CT volumes with various different scanning
protocols (e.g., contrast and non-contrast, various resolution and position)
and large variations in populations (e.g., ages and pathology). Our approach
outperforms the state-of-the-art solutions in terms of segmentation accuracy
and computing efficiency.Comment: Accepted by MICCAI 201
3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes
While deep convolutional neural networks (CNN) have been successfully applied
for 2D image analysis, it is still challenging to apply them to 3D anisotropic
volumes, especially when the within-slice resolution is much higher than the
between-slice resolution and when the amount of 3D volumes is relatively small.
On one hand, direct learning of CNN with 3D convolution kernels suffers from
the lack of data and likely ends up with poor generalization; insufficient GPU
memory limits the model size or representational power. On the other hand,
applying 2D CNN with generalizable features to 2D slices ignores between-slice
information. Coupling 2D network with LSTM to further handle the between-slice
information is not optimal due to the difficulty in LSTM learning. To overcome
the above challenges, we propose a 3D Anisotropic Hybrid Network (AH-Net) that
transfers convolutional features learned from 2D images to 3D anisotropic
volumes. Such a transfer inherits the desired strong generalization capability
for within-slice information while naturally exploiting between-slice
information for more effective modelling. The focal loss is further utilized
for more effective end-to-end learning. We experiment with the proposed 3D
AH-Net on two different medical image analysis tasks, namely lesion detection
from a Digital Breast Tomosynthesis volume, and liver and liver tumor
segmentation from a Computed Tomography volume and obtain the state-of-the-art
results