33 research outputs found
Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae : effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation
The lactose in cheese whey is an interesting
substrate for the production of bulk commodities such as
bio-ethanol, due to the large amounts of whey surplus
generated globally. In this work, we studied the performance
of a recombinant Saccharomyces cerevisiae strain
expressing the lactose permease and intracellular ß-galactosidase
from Kluyveromyces lactis in fermentations of
deproteinized concentrated cheese whey powder solutions.
Supplementation with 10 g/l of corn steep liquor significantly
enhanced whey fermentation, resulting in the production
of 7.4% (v/v) ethanol from 150 g/l initial lactose in
shake-flask fermentations, with a corresponding productivity
of 1.2 g/l/h. The flocculation capacity of the yeast
strain enabled stable operation of a repeated-batch process
in a 5.5-l air-lift bioreactor, with simple biomass recycling
by sedimentation of the yeast flocs. During five consecutive
batches, the average ethanol productivity was 0.65 g/l/h
and ethanol accumulated up to 8% (v/v) with lactose-toethanol
conversion yields over 80% of theoretical. Yeast
viability (>97%) and plasmid retention (>84%) remained
high throughout the operation, demonstrating the stability
and robustness of the strain. In addition, the easy and
inexpensive recycle of the yeast biomass for repeated utilization
makes this process economically attractive for
industrial implementation.Fundação para a Ciência e a Tecnologia (FCT)LACTOGAL-Produtos Alimentares S.A.Companhia Portuguesa de Amidos, S.A
Incorporation of copper ions by yeast Kluyveromyces marxianus during cultivation on whey
The production of
Kluyveromyces marxianus
biomass enriched with copper ions were studied. For that reason the growth of
Kluyveromyces marxianus
in whey with different concentrations of copper ions in batch process under semiaerobic and aerobic conditions were examined. The kinetics of copper ions accumulation in yeast cells, under the same conditions, as well as the reduction of chemical oxygen demand (COD) during yeast growth in aerobic condition, were monitored, as well. The concentration of copper ions in media up to 4 mg l−1 did not affect the yeast growth, whereas at a higher concentration, a marked decrease in the rate of yeast growth, ethanol production and lactose consumption occurred. In semiaerobic conditions, the maximum uptake of 0.35 mg Cu g−1 d.m. was obtained, while in aerobic conditions a lower uptake of 0.26 mg Cu g−1 d.m. and COD reduction of 85% were achieved. COD reduction was independent of the copper addition or uptake
Enhancement of Trigonopsis variabilis D-Amino Acid Oxidase Overproduction in Fed-batch Cultivation of Escherichia coli
D-Amino acid oxidase is a key enzyme in the production of semisynthetic cephalosporins. The Trigonopsis variabilis D-amino acid oxidase with 12- amino-acid peptide at N-terminus was expressed in Escherichia coli BL21(DE3), in a series of short fed-batch cultivations. The strategy of gradual induction and gradual feeding with D-methionine during expression resulted in active enzyme production twice as high as that in which the inducer and methionine were added all at once at the expression start. In optimal conditions during 14 h of aerobic cultivation, 350 mg L–1 of active enzyme was produced
Uptake of iron by yeast cells and its impact on biomass production
Procedures for the production of Saccharomyces cerevisiae biomass enriched with iron and the effects of the iron ions addition into the molasses medium on the yeast growth and the production of ethanol were studied. The growth of the yeast S. cerevisiae and the ethanol production in media with different concentrations of Fe were monitored in the batch process under semiaerobic and anaerobic conditions. The highest biomass concentration and ethanol production were achieved in the medium with 0.6-0.8 g l-1 of Fe under both (semiaerobic and anaerobic) conditions. Kinetics of the iron ions accumulation in yeast cells during 24 h of growth in the batch process under semiaerobic and anaerobic conditions were monitored. In anaerobic conditions the maximum uptake (10 mg g-1 d.m. yeast biomass) was obtained after 12 h of fermentation, while in semiaerobic conditions a four times lower uptake (2.5 mg g-1 d.m. yeast biomass) was obtained after 16 h of fermentation