412 research outputs found

    Quark Gluon Plasma - Recent Advances

    Full text link
    While heavy ion collisions at the SPS have produced excited strongly interacting matter near the conditions for quark deconfinement, the RHIC may be the first machine capable of creating quark-antiquark plasmas sufficiently long-lived to allow deep penetration into the new phase. A comprehensive experimental program addressing this exciting physics has been put into place. Presented here are preliminary results from Au+Au at S\sqrt{S} = 130 GeV obtained during the first RHIC run and some CERN SPS results from Pb+Pb at S\sqrt{S} = 17 GeV (particularly relevant to QGP search).Comment: 15 pages, 19 figure

    Planetary nebulae in M32 and the bulge of M31: Line intensities and oxygen abundances

    Get PDF
    We present spectroscopy of planetary nebulae in M32 and in the bulge of M31 that we obtained with the MOS spectrograph at the Canada-France-Hawaii Telescope. Our sample includes 30 planetary nebulae in M31 and 9 planetary nebulae in M32. We also observed one H II region in the disk of M31. We detected [O III]λ\lambda4363 in 18 of the planetary nebulae, 4 in M32 and 14 in the bulge of M31. We use our line intensities to derive electron temperatures and oxygen abundances for the planetary nebulae.Comment: 17 pages, 12 figures, accepted by Astronomy & Astrophysics Supplement Serie

    Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy

    Get PDF
    BACKGROUND: Autoimmune retinal degeneration may occur in patients who present with sudden or, less commonly, subacute loss of vision of retinal origin, associated with an abnormal ERG, through the action of autoantibodies against retinal proteins. Often the patients are initially diagnosed with or suspected of having a paraneoplastic retinopathy (PR), such as cancer-associated retinopathy (CAR). However, there is limited information on the occurrence, the specificity of autoantibodies in these patients, and their association with clinical symptoms. METHODS: Sera were obtained from 193 retinopathy patients who presented with clinical symptoms resembling PR or autoimmune retinopathy (AR), including sudden painless loss of vision, typically associated with visual field defects and photopsias, and abnormal rod and/or cone responses on the electroretinogram (ERG). Sera were tested for the presence of anti-retinal autoantibodies by Western blot analysis using proteins extracted from human retina and by immunohistochemistry. Autoantibody titers against recoverin and enolase were measured by ELISA. RESULTS: We identified a higher prevalence of anti-retinal autoantibodies in retinopathy patients. Ninety-one patients' sera (47.1%) showed autoantibodies of various specificities with a higher incidence of antibodies present in retinopathy patients diagnosed with cancer (33/52; 63.5%; p = 0.009) than in retinopathy patients without cancer (58/141; 41.1%). The average age of PR patients was 62.0 years, and that of AR patients was 55.9 years. Autoantibodies against recoverin (p23) were only present in the sera of PR patients, autoantibodies against unknown p35 were more common in patients with AR, while anti-enolase (anti-p46) autoantibodies were nearly equally distributed in the sera of patients with PR and those with AR. In the seropositive patients, the autoantibodies persisted over a long period of time – from months to years. A rebound in anti-recoverin autoantibody titer was found to be associated with exacerbations in visual symptoms but not in the recurrence of cancer. When compared to sera from healthy subjects, autoantibodies against retinal proteins from both groups of patients were cytotoxic to retinal cells, indicating their pathogenic potential. CONCLUSIONS: These studies showed that patients with sudden or subacute, unexplained loss of vision of retinal origin have anti-retinal antibodies in a broad range of specificity and indicate the need for autoantibody screening. Follow-up tests of antibody levels may be useful as a biomarker of disease activity associated with worsening of vision. Moreover, the heterogeneity in autoantibody specificity may explain the variation and complexity of clinical symptoms in retinopathy patients

    Substrate recognition by casein kinase-II: The role of histidine-160

    Get PDF
    AbstractCasein kinase-II (CK-II) belongs to the protein kinases recognizing serine/threonine in proximity to acidic residues in protein substrates. Crystallography and mutagenesis studies on the cAMP-dependent protein kinase (PKA) disclosed that glutamic acid-170 (E170), is important for interaction of substrates with the enzyme. At a position corresponding to E170 in PKA most Ser/Thr kinases have an aspartic or glutamic acid, while CK-II has a histidine residue (H160). In order to examine the relevance of this substitution for CK-II substrate specificity, a mutant of the catalytic α subunit (H160D), in which H160 was changed to aspartic acid, was made. Our results show that H160 is not primarily involved in canonical substrate recognition, but does interact with an acidic residue located at position −2 with respect to the target Ser/Thr

    Gold nanoprism-nanorod face off: comparing the heating efficiency, cellular internalization and thermoablation capacity

    Get PDF
    [Aim]: This work compares the synthesis, heating capability, cellular internalization and thermoablation capacity of two different types of anisotropic gold nanoparticles: gold nanorods (NRs) and nanoprisms (NPrs). [Methods]: Both particles possess surface plasmon resonance absorption bands in the near-IR, and their heating efficiency upon irradiation with a continuous near-IR laser (1064 nm) was evaluated. The cellular internalization, location and toxicity of these PEG-stabilized NPrs and NRs were then assessed in the Vero cell line by transmission electron microscopy and inductively coupled plasma mass spectrometry analysis, and their ability to induce cell death upon laser irradiation was then evaluated and compared. [Results & conclusion]: Although both nanoparticles are highly efficient photothermal converters, NRs possessed a more efficient heating capability, yet the in vitro thermoablation studies clearly demonstrated that NPrs were more effective at inducing cell death through photothermal ablation due to their greater cellular internalization.This work was supported by Shanghai Jiao Tong University, Fondo Social de la DGA (grupos DGA), Ministerio de la Economía y Competitividad del Gobierno de España for the public funding of Proyectos I+D+I – Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (project no. SAF2014–54763-C2–2-R) and the ERC-Starting grant 239931-NANOPUZZLE. For financial support SG Mitchell acknowledges the Fundación General CSIC (Programa ComFuturo); A Artiga acknowledges the Ministerio de Educación, Cultura y Deportes for an FPU grant (FPU014/06249); G Alfranca acknowledges the Ministry of Education for a China Scholarship Council (CSC) grant; and M Moros acknowledges the European Commission for an MCSA Fellowship (grant agreement no. 660228). TPeer Reviewe

    Permeable, Non-irritating Prodrugs of Nonsteroidal and Steroidal Agents

    Get PDF
    Prodrugs containing an active drug molecule linked to a polyethylene glycol group, and a method of use thereof are described. Exemplary soluble ester prodrugs contain naproxen, triamcinolone acetonide, gancyclovir, taxol, cyclosporin, dideoxyinosine, trihydroxy steroids, and flurbiprofen molecules linked to polyethylene glycol (PEG) groups. Pharmaceutical compositions containing these prodrugs, and a method of using these esters for treating disease states or symptoms are also described

    Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo

    Get PDF
    Background: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. Methods: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. Results: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFa and IFN¿) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. Conclusion: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health
    corecore